On the Numerical Evaluation of Distributions in Random Matrix Theory: A Review

In this paper we review and compare the numerical evaluation of those probability distributions in random matrix theory that are analytically represented in terms of Painleve transcendents or Fredholm determinants. Con- crete examples for the Gaussian and Laguerre (Wishart) β-ensembles and their various scaling limits are discussed. We argue that the numerical approximation of Fredholm determinants is the conceptually more simple and efficient of the two approaches, easily generalized to the computation of joint probabilities and correlations. Having the means for extensive numerical explorations at hand, we discovered new and surprising determinantal formulae for the kth largest (or smallest) level in the edge scaling limits of the Orthogonal and Symplec- tic Ensembles; formulae that in turn led to improved numerical evaluations. The paper comes with a toolbox of Matlab functions that facilitates further mathematical experiments by the reader.

[1]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[2]  Asymptotics of level-spacing distributions for random matrices. , 1992, Physical review letters.

[3]  Energy level spacing distributions , 1963 .

[4]  M. Gaudin Sur la loi limite de l'espacement des valeurs propres d'une matrice ale´atoire , 1961 .

[5]  Matrix kernels for the Gaussian orthogonal and symplectic ensembles , 2004, math-ph/0405035.

[6]  Craig A. Tracy,et al.  Mathematical Physics © Springer-Verlag 1994 Fredholm Determinants, Differential Equations and Matrix Models , 2022 .

[7]  H. Spohn,et al.  Scale Invariance of the PNG Droplet and the Airy Process , 2001, math/0105240.

[8]  Jonas Hägg LOCAL GAUSSIAN FLUCTUATIONS IN THE AIRY AND DISCRETE PNG PROCESSES , 2007 .

[9]  Burt V. Bronk,et al.  Accuracy of the Semicircle Approximation for the Density of Eigenvalues of Random Matrices , 1964 .

[10]  F. Olver Asymptotics and Special Functions , 1974 .

[11]  C. Tracy,et al.  The Distributions of Random Matrix Theory and their Applications , 2009 .

[12]  P. Deift Universality for mathematical and physical systems , 2006, math-ph/0603038.

[13]  P. Moerbeke,et al.  PDEs for the joint distributions of the Dyson, Airy and Sine processes , 2004, math/0403504.

[14]  Peter A. Clarkson,et al.  Painlevé equations: nonlinear special functions , 2003 .

[15]  B. Simon Trace ideals and their applications , 1979 .

[16]  Craig A. Tracy,et al.  Correlation Functions, Cluster Functions, and Spacing Distributions for Random Matrices , 1998 .

[17]  C. Tracy,et al.  Mathematical Physics © Springer-Verlag 1996 On Orthogonal and Symplectic Matrix Ensembles , 1995 .

[18]  Tobin A. Driscoll,et al.  The chebop system for automatic solution of differential equations , 2008 .

[19]  Folkmar Bornemann,et al.  Asymptotic independence of the extreme eigenvalues of Gaussian unitary ensemble , 2009, 0902.3870.

[20]  H. Widom On Asymptotics for the Airy Process , 2003, math/0308157.

[21]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[22]  Increasing subsequences and the hard-to-soft edge transition in matrix ensembles , 2002, math-ph/0205007.

[23]  Herbert Spohn,et al.  Exact Scaling Functions for One-Dimensional Stationary KPZ Growth , 2004 .

[24]  F. Dyson Statistical Theory of the Energy Levels of Complex Systems. I , 1962 .

[25]  Elliptic cylinder and spheroidal wave functions : including tables of separation constants and coefficients , 2003 .

[26]  Relationships between τ-functions and Fredholm determinant expressions for gap probabilities in random matrix theory , 2006, math-ph/0604027.

[27]  P. Forrester The spectrum edge of random matrix ensembles , 1993 .

[28]  P. J. Forrester,et al.  Application of the τ-function theory of Painlevé equations to random matrices: PV, PIII, the LUE, JUE, and CUE , 2002 .

[29]  Herbert E. Salzer,et al.  Lagrangian interpolation at the Chebyshev points xn, [ngr][equiv]cos([ngr][pgr]/n), [ngr]=0(1) n; some unnoted advantages , 1972, Comput. J..

[30]  Craig A. Tracy,et al.  Mathematical Physics © Springer-Verlag 1994 Level Spacing Distributions and the Bessel Kernel , 1993 .

[31]  Lloyd N. Trefethen,et al.  An Extension of MATLAB to Continuous Functions and Operators , 2004, SIAM J. Sci. Comput..

[32]  G. W. Stewart,et al.  Matrix algorithms , 1998 .

[33]  Edouard Brézin,et al.  Exactly Solvable Field Theories of Closed Strings , 1990 .

[34]  Israel Gohberg,et al.  Traces and determinants of linear operators , 1996 .

[35]  A. Odlyzko On the distribution of spacings between zeros of the zeta function , 1987 .

[36]  N. Higham The numerical stability of barycentric Lagrange interpolation , 2004 .

[37]  C. Tracy,et al.  Introduction to Random Matrices , 1992, hep-th/9210073.

[38]  S. P. Hastings,et al.  A boundary value problem associated with the second painlevé transcendent and the Korteweg-de Vries equation , 1980 .

[39]  Lloyd N. Trefethen,et al.  Barycentric Lagrange Interpolation , 2004, SIAM Rev..

[40]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[41]  Peter Deuflhard,et al.  Scientific Computing with Ordinary Differential Equations , 2002 .

[42]  The Airy1 Process is not the Limit of the Largest Eigenvalue in GOE Matrix Diffusion , 2008, 0806.3410.

[43]  Per-Olof Persson,et al.  Numerical Methods for Eigenvalue Distributions of Random Matrices , 2005 .

[44]  A. Edelman,et al.  Random matrix theory , 2005, Acta Numerica.

[45]  Folkmar Bornemann,et al.  On the numerical evaluation of Fredholm determinants , 2008, Math. Comput..

[46]  Craig A. Tracy,et al.  Universality of the distribution functions of random matrix theory , 1999 .

[47]  C. Tracy,et al.  Spin spin correlation functions for the two-dimensional Ising model: Exact theory in the scaling region , 1976 .

[48]  M. Jimbo,et al.  Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent , 1980 .

[49]  G. W. Stewart,et al.  Matrix Algorithms: Volume 1, Basic Decompositions , 1998 .

[50]  LETTER TO THE EDITOR: A determinantal formula for the GOE Tracy Widom distribution , 2005, math-ph/0505012.

[51]  P. J. Forrester,et al.  Application of the τ-Function Theory¶of Painlevé Equations to Random Matrices:¶PIV, PII and the GUE , 2001, math-ph/0103025.

[52]  P. Forrester,et al.  Interrelationships between orthogonal, unitary and symplectic matrix ensembles , 1999, solv-int/9907008.

[53]  Jonathan M. Borwein,et al.  Mathematics by experiment - plausible reasoning in the 21st century , 2003 .

[54]  Hard and soft edge spacing distributions for random matrix ensembles with orthogonal and symplectic symmetry , 2006, math-ph/0605022.

[55]  Momar Dieng,et al.  Distribution functions for edge eigenvalues in orthogonal and symplectic ensembles: Painlevé representations , 2005 .

[56]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[57]  Folkmar Bornemann,et al.  Accuracy and Stability of Computing High-order Derivatives of Analytic Functions by Cauchy Integrals , 2009, Found. Comput. Math..

[58]  Athanassios S. Fokas,et al.  Painleve Transcendents: The Riemann-hilbert Approach , 2006 .