On the Numerical Evaluation of Distributions in Random Matrix Theory: A Review
暂无分享,去创建一个
[1] M. Stephanov,et al. Random Matrices , 2005, hep-ph/0509286.
[2] Asymptotics of level-spacing distributions for random matrices. , 1992, Physical review letters.
[3] Energy level spacing distributions , 1963 .
[4] M. Gaudin. Sur la loi limite de l'espacement des valeurs propres d'une matrice ale´atoire , 1961 .
[5] Matrix kernels for the Gaussian orthogonal and symplectic ensembles , 2004, math-ph/0405035.
[6] Craig A. Tracy,et al. Mathematical Physics © Springer-Verlag 1994 Fredholm Determinants, Differential Equations and Matrix Models , 2022 .
[7] H. Spohn,et al. Scale Invariance of the PNG Droplet and the Airy Process , 2001, math/0105240.
[8] Jonas Hägg. LOCAL GAUSSIAN FLUCTUATIONS IN THE AIRY AND DISCRETE PNG PROCESSES , 2007 .
[9] Burt V. Bronk,et al. Accuracy of the Semicircle Approximation for the Density of Eigenvalues of Random Matrices , 1964 .
[10] F. Olver. Asymptotics and Special Functions , 1974 .
[11] C. Tracy,et al. The Distributions of Random Matrix Theory and their Applications , 2009 .
[12] P. Deift. Universality for mathematical and physical systems , 2006, math-ph/0603038.
[13] P. Moerbeke,et al. PDEs for the joint distributions of the Dyson, Airy and Sine processes , 2004, math/0403504.
[14] Peter A. Clarkson,et al. Painlevé equations: nonlinear special functions , 2003 .
[15] B. Simon. Trace ideals and their applications , 1979 .
[16] Craig A. Tracy,et al. Correlation Functions, Cluster Functions, and Spacing Distributions for Random Matrices , 1998 .
[17] C. Tracy,et al. Mathematical Physics © Springer-Verlag 1996 On Orthogonal and Symplectic Matrix Ensembles , 1995 .
[18] Tobin A. Driscoll,et al. The chebop system for automatic solution of differential equations , 2008 .
[19] Folkmar Bornemann,et al. Asymptotic independence of the extreme eigenvalues of Gaussian unitary ensemble , 2009, 0902.3870.
[20] H. Widom. On Asymptotics for the Airy Process , 2003, math/0308157.
[21] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.
[22] Increasing subsequences and the hard-to-soft edge transition in matrix ensembles , 2002, math-ph/0205007.
[23] Herbert Spohn,et al. Exact Scaling Functions for One-Dimensional Stationary KPZ Growth , 2004 .
[24] F. Dyson. Statistical Theory of the Energy Levels of Complex Systems. I , 1962 .
[25] Elliptic cylinder and spheroidal wave functions : including tables of separation constants and coefficients , 2003 .
[26] Relationships between τ-functions and Fredholm determinant expressions for gap probabilities in random matrix theory , 2006, math-ph/0604027.
[27] P. Forrester. The spectrum edge of random matrix ensembles , 1993 .
[28] P. J. Forrester,et al. Application of the τ-function theory of Painlevé equations to random matrices: PV, PIII, the LUE, JUE, and CUE , 2002 .
[29] Herbert E. Salzer,et al. Lagrangian interpolation at the Chebyshev points xn, [ngr][equiv]cos([ngr][pgr]/n), [ngr]=0(1) n; some unnoted advantages , 1972, Comput. J..
[30] Craig A. Tracy,et al. Mathematical Physics © Springer-Verlag 1994 Level Spacing Distributions and the Bessel Kernel , 1993 .
[31] Lloyd N. Trefethen,et al. An Extension of MATLAB to Continuous Functions and Operators , 2004, SIAM J. Sci. Comput..
[32] G. W. Stewart,et al. Matrix algorithms , 1998 .
[33] Edouard Brézin,et al. Exactly Solvable Field Theories of Closed Strings , 1990 .
[34] Israel Gohberg,et al. Traces and determinants of linear operators , 1996 .
[35] A. Odlyzko. On the distribution of spacings between zeros of the zeta function , 1987 .
[36] N. Higham. The numerical stability of barycentric Lagrange interpolation , 2004 .
[37] C. Tracy,et al. Introduction to Random Matrices , 1992, hep-th/9210073.
[38] S. P. Hastings,et al. A boundary value problem associated with the second painlevé transcendent and the Korteweg-de Vries equation , 1980 .
[39] Lloyd N. Trefethen,et al. Barycentric Lagrange Interpolation , 2004, SIAM Rev..
[40] P. Deift. Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .
[41] Peter Deuflhard,et al. Scientific Computing with Ordinary Differential Equations , 2002 .
[42] The Airy1 Process is not the Limit of the Largest Eigenvalue in GOE Matrix Diffusion , 2008, 0806.3410.
[43] Per-Olof Persson,et al. Numerical Methods for Eigenvalue Distributions of Random Matrices , 2005 .
[44] A. Edelman,et al. Random matrix theory , 2005, Acta Numerica.
[45] Folkmar Bornemann,et al. On the numerical evaluation of Fredholm determinants , 2008, Math. Comput..
[46] Craig A. Tracy,et al. Universality of the distribution functions of random matrix theory , 1999 .
[47] C. Tracy,et al. Spin spin correlation functions for the two-dimensional Ising model: Exact theory in the scaling region , 1976 .
[48] M. Jimbo,et al. Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent , 1980 .
[49] G. W. Stewart,et al. Matrix Algorithms: Volume 1, Basic Decompositions , 1998 .
[50] LETTER TO THE EDITOR: A determinantal formula for the GOE Tracy Widom distribution , 2005, math-ph/0505012.
[51] P. J. Forrester,et al. Application of the τ-Function Theory¶of Painlevé Equations to Random Matrices:¶PIV, PII and the GUE , 2001, math-ph/0103025.
[52] P. Forrester,et al. Interrelationships between orthogonal, unitary and symplectic matrix ensembles , 1999, solv-int/9907008.
[53] Jonathan M. Borwein,et al. Mathematics by experiment - plausible reasoning in the 21st century , 2003 .
[54] Hard and soft edge spacing distributions for random matrix ensembles with orthogonal and symplectic symmetry , 2006, math-ph/0605022.
[55] Momar Dieng,et al. Distribution functions for edge eigenvalues in orthogonal and symplectic ensembles: Painlevé representations , 2005 .
[56] Philip Rabinowitz,et al. Methods of Numerical Integration , 1985 .
[57] Folkmar Bornemann,et al. Accuracy and Stability of Computing High-order Derivatives of Analytic Functions by Cauchy Integrals , 2009, Found. Comput. Math..
[58] Athanassios S. Fokas,et al. Painleve Transcendents: The Riemann-hilbert Approach , 2006 .