Filling carbon nanotubes with Ni–Fe alloys via methylbenzene-oriented constant current electrodeposition for hydrazine electrocatalysis

[1]  Jun Jin,et al.  A highly active hydrazine fuel cell catalyst consisting of a Ni-Fe nanoparticle alloy plated on carbon materials by pulse reversal , 2012 .

[2]  C. Pham‐Huu,et al.  High-Density Monodispersed Cobalt Nanoparticles Filled into Multiwalled Carbon Nanotubes , 2012 .

[3]  M. Terrones,et al.  Evaluating the characteristics of multiwall carbon nanotubes , 2011 .

[4]  Xiulian Pan,et al.  The effects of confinement inside carbon nanotubes on catalysis. , 2011, Accounts of chemical research.

[5]  T. Sakamoto,et al.  Noble metal-free hydrazine fuel cell catalysts: EPOC effect in competing chemical and electrochemical reaction pathways. , 2011, Journal of the American Chemical Society.

[6]  J. Eckert,et al.  Current‐Induced Mass Transport in Filled Multiwalled Carbon Nanotubes , 2011, Advanced materials.

[7]  R. Hong,et al.  An easy approach to encapsulating Fe3O4 nanoparticles in multiwalled carbon nanotubes , 2010 .

[8]  Y. Qian,et al.  One-step route to synthesize multiwalled carbon nanotubes filled with MgO nanorods , 2010 .

[9]  C. Pham‐Huu,et al.  Selective deposition of metal nanoparticles inside or outside multiwalled carbon nanotubes. , 2009, ACS nano.

[10]  J. Kong,et al.  Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with Fe2O3 particles. , 2008, Journal of hazardous materials.

[11]  Xinhe Bao,et al.  Reactions over catalysts confined in carbon nanotubes. , 2008, Chemical communications.

[12]  T. Fang,et al.  Characteristics of Co-filled carbon nanotubes , 2008 .

[13]  Dawei Liu,et al.  Template-based synthesis of nanorod, nanowire, and nanotube arrays. , 2008, Advances in colloid and interface science.

[14]  Jun Jin,et al.  Magnetic Fe nanoparticle functionalized water-soluble multi-walled carbon nanotubules towards the preparation of sorbent for aromatic compounds removal. , 2007, Chemical communications.

[15]  P. Kotula,et al.  Electrodeposited 80Ni–20Fe (Permalloy) as a structural material for high aspect ratio microfabrication , 2006 .

[16]  T. Gemming,et al.  Growth and characterization of filled carbon nanotubes with ferromagnetic properties , 2006 .

[17]  Wei Chen,et al.  Facile autoreduction of iron oxide/carbon nanotube encapsulates. , 2006, Journal of the American Chemical Society.

[18]  C. Pham‐Huu,et al.  Filling of single silicon nanocrystals within multiwalled carbon nanotubes , 2006 .

[19]  G. Briggs,et al.  Molecules in carbon nanotubes. , 2005, Accounts of chemical research.

[20]  K. Gubbins,et al.  Effect of Confinement on Chemical Reactions , 2005 .

[21]  G. Wilcox,et al.  Electrodeposition of Zn–Co alloys with pulse containing reverse current , 2005 .

[22]  H. Bau,et al.  Filling carbon nanotubes with particles. , 2005, Nano letters.

[23]  Chi-Chang Hu,et al.  Composition controlling of Co–Ni and Fe–Co alloys using pulse-reverse electroplating through means of experimental strategies , 2005 .

[24]  Z. Gu,et al.  Super-long continuous Ni nanowires encapsulated in carbon nanotubes. , 2004, Chemical communications.

[25]  I. Mönch,et al.  Magnetic properties of aligned Fe-filled carbon nanotubes , 2003 .

[26]  Xian‐Wen Wei,et al.  Preparation of Fe–Ni alloy nanoparticles inside carbon nanotubes via wet chemistry , 2002 .

[27]  P. T. Tang Pulse reversal plating of nickel and nickel alloys for microgalvanics , 2001 .

[28]  Fu-Rong Chen,et al.  Production and in‐situ Metal Filling of Carbon Nanotubes in Water , 2001 .

[29]  M. Terrones,et al.  Alloy nanowires: Invar inside carbon nanotubes , 2001 .

[30]  A novel approach to bulk synthesis of carbon nanotubes filled with metal by a catalytic chemical vapor deposition method , 2000 .

[31]  Xinyi Zhang,et al.  Carbon nanotubes filled partially or completely with nickel , 2000 .

[32]  A. Gedanken,et al.  Synthesis of carbon nanoflasks , 2000 .

[33]  B. Viswanathan,et al.  Preparation of a Pt–Ru bimetallic systemsupported on carbon nanotubes , 2000 .

[34]  M. Terrones,et al.  Electrolytic formation of carbon-sheathed mixed Sn-Pb nanowires , 1999 .

[35]  D. Ugarte,et al.  Filling carbon nanotubes , 1998 .

[36]  M. Terrones,et al.  Novel nanotubes and encapsulated nanowires , 1998 .

[37]  C. Rao,et al.  Metal-Filled and Hollow Carbon Nanotubes Obtained by the Decomposition of Metal-Containing Free Precursor Molecules , 1997 .

[38]  T. Kyotani,et al.  Formation of platinum nanorods and nanoparticles in uniform carbon nanotubes prepared by a template carbonization method , 1997 .

[39]  Masato Tomita,et al.  Magnetic thin films of cobalt nanocrystals encapsulated in graphite-like carbon , 1996, Nature.

[40]  C. Guerret-Piecourt,et al.  Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes , 1994, Nature.

[41]  R. Ruoff The continuing saga , 1994, Nature.

[42]  Malcolm L. H. Green,et al.  A simple chemical method of opening and filling carbon nanotubes , 1994, Nature.

[43]  T. Ebbesen,et al.  Capillarity and Wetting of Carbon Nanotubes , 1994, Science.

[44]  P. Ajayan,et al.  Capillarity-induced filling of carbon nanotubes , 1993, Nature.

[45]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.