On-line trajectory clustering for anomalous events detection

In this paper, we propose a trajectory clustering algorithm suited for video surveillance systems. Trajectories are clustered on-line, as the data are collected, and clusters are organized in a tree-like structure that, augmented with probability information, can be used to perform behaviour analysis, since it allows the identification of anomalous events.

[1]  Takeo Kanade,et al.  A System for Video Surveillance and Monitoring , 2000 .

[2]  T. Warren Liao,et al.  Clustering of time series data - a survey , 2005, Pattern Recognit..

[3]  Fatih Murat Porikli,et al.  Clustering Variable Length Sequences by Eigenvector Decomposition Using HMM , 2004, SSPR/SPR.

[4]  Irfan A. Essa,et al.  Expectation grammars: leveraging high-level expectations for activity recognition , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[5]  Philip Bille,et al.  Tree Edit Distance, Alignment Distance and Inclusion , 2003 .

[6]  Gian Luca Foresti,et al.  Toward event recognition using dynamic trajectory analysis and prediction , 2005 .

[7]  Stan Salvador,et al.  FastDTW: Toward Accurate Dynamic Time Warping in Linear Time and Space , 2004 .

[8]  W. Eric L. Grimson,et al.  Learning Patterns of Activity Using Real-Time Tracking , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Vladimir Pavlovic,et al.  Discovering clusters in motion time-series data , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[10]  Larry S. Davis,et al.  W4: Real-Time Surveillance of People and Their Activities , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Christian Micheloni,et al.  A cooperative multicamera system for video-surveillance of parking lots , 2003 .

[12]  David C. Hogg,et al.  Learning the distribution of object trajectories for event recognition , 1996, Image Vis. Comput..

[13]  Jean-Philippe Thiran,et al.  Multi-Layer Hierarchical Clustering of Pedestrian Trajectories for Automatic Counting of People in Video Sequences , 2005, 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1.

[14]  Tim J. Ellis,et al.  Learning semantic scene models from observing activity in visual surveillance , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[15]  George Kollios,et al.  Extraction and clustering of motion trajectories in video , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[16]  Aaron F. Bobick,et al.  Recognition of Visual Activities and Interactions by Stochastic Parsing , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Dimitrios Gunopulos,et al.  Iterative Incremental Clustering of Time Series , 2004, EDBT.

[18]  Philip Chan,et al.  Toward accurate dynamic time warping in linear time and space , 2007, Intell. Data Anal..

[19]  Akira Hayashi,et al.  Multi-object Motion Pattern Classification for Visual Surveillance and Sports Video Retrieval , 2002 .