Data-Driven Interactive Multiobjective Optimization Using a Cluster-Based Surrogate in a Discrete Decision Space

In this paper, a clustering based surrogate is proposed to be used in offline data-driven multiobjective optimization to reduce the size of the optimization problem in the decision space. The surrogate is combined with an interactive multiobjective optimization approach and it is applied to forest management planning with promising results.

[1]  Robert B. Miller,et al.  Response time in man-computer conversational transactions , 1899, AFIPS Fall Joint Computing Conference.

[2]  Roger Miller,et al.  Design of Experiments A Realistic Approach. , 1975 .

[3]  E. Polak,et al.  On Multicriteria Optimization , 1976 .

[4]  C. Hwang Multiple Objective Decision Making - Methods and Applications: A State-of-the-Art Survey , 1979 .

[5]  A. Wierzbicki A Mathematical Basis for Satisficing Decision Making , 1982 .

[6]  Hirotaka Nakayama,et al.  Satisficing Trade-off Method for Multiobjective Programming , 1984 .

[7]  Peter J. Rousseeuw,et al.  Clustering by means of medoids , 1987 .

[8]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[9]  D. Broomhead,et al.  Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks , 1988 .

[10]  O. Larichev Cognitive validity in design of decision‐aiding techniques , 1992 .

[11]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[12]  T. J. Mitchell,et al.  Exploratory designs for computational experiments , 1995 .

[13]  K. Miettinen,et al.  Interactive bundle-based method for nondifferentiable multiobjeective optimization: nimbus § , 1995 .

[14]  G. De Soete,et al.  Clustering and Classification , 2019, Data-Driven Science and Engineering.

[15]  P. Sopp Cluster analysis. , 1996, Veterinary immunology and immunopathology.

[16]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[17]  John Buchanan,et al.  A naïve approach for solving MCDM problems: the GUESS method , 1997 .

[18]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[19]  T. M. English Optimization is easy and learning is hard in the typical function , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[20]  D.M. Mount,et al.  An Efficient k-Means Clustering Algorithm: Analysis and Implementation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Kyriakos C. Giannakoglou,et al.  Design of optimal aerodynamic shapes using stochastic optimization methods and computational intelligence , 2002 .

[22]  E. Vigneau,et al.  Clustering of Variables Around Latent Components , 2003 .

[23]  Yaochu Jin,et al.  Quality Measures for Approximate Models in Evolutionary Computation , 2003 .

[24]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[25]  Kalyanmoy Deb,et al.  Optimization for Engineering Design: Algorithms and Examples , 2004 .

[26]  Aleks Jakulin,et al.  Applying Discrete PCA in Data Analysis , 2004, UAI.

[27]  Christopher H. Bryant,et al.  Functional genomic hypothesis generation and experimentation by a robot scientist , 2004, Nature.

[28]  Philip Chan,et al.  Determining the number of clusters/segments in hierarchical clustering/segmentation algorithms , 2004, 16th IEEE International Conference on Tools with Artificial Intelligence.

[29]  Bernhard Sendhoff,et al.  Structure optimization of neural networks for evolutionary design optimization , 2005, Soft Comput..

[30]  Matthias Ehrgott,et al.  Multiple criteria decision analysis: state of the art surveys , 2005 .

[31]  Mika Lehtonen,et al.  Reusing legacy FORTRAN in the MOTTI growth and yield simulator , 2005 .

[32]  Yew-Soon Ong,et al.  A study on polynomial regression and Gaussian process global surrogate model in hierarchical surrogate-assisted evolutionary algorithm , 2005, 2005 IEEE Congress on Evolutionary Computation.

[33]  Evelyne Vigneau,et al.  Clustering of variables to analyze spectral data , 2005 .

[34]  Matthias Ehrgott,et al.  Multicriteria Optimization (2. ed.) , 2005 .

[35]  Yaochu Jin,et al.  A comprehensive survey of fitness approximation in evolutionary computation , 2005, Soft Comput..

[36]  António Gaspar-Cunha,et al.  A Multi-Objective Evolutionary Algorithm Using Neural Networks to Approximate Fitness Evaluations , 2005, Int. J. Comput. Syst. Signals.

[37]  Kaisa Miettinen,et al.  Synchronous approach in interactive multiobjective optimization , 2006, Eur. J. Oper. Res..

[38]  Joshua D. Knowles,et al.  ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems , 2006, IEEE Transactions on Evolutionary Computation.

[39]  Joshua D. Knowles,et al.  An Evolutionary Approach to Multiobjective Clustering , 2007, IEEE Transactions on Evolutionary Computation.

[40]  Hirotaka Nakayama,et al.  Meta-Modeling in Multiobjective Optimization , 2008, Multiobjective Optimization.

[41]  Charles Anderson,et al.  The end of theory: The data deluge makes the scientific method obsolete , 2008 .

[42]  Kaisa Miettinen,et al.  Introduction to Multiobjective Optimization: Interactive Approaches , 2008, Multiobjective Optimization.

[43]  Anil K. Jain Data clustering: 50 years beyond K-means , 2008, Pattern Recognit. Lett..

[44]  Luc De Raedt,et al.  Active Learning for High Throughput Screening , 2008, Discovery Science.

[45]  Kaisa Miettinen,et al.  Clustering aided approach for decision making in computationally expensive multiobjective optimization , 2009, Optim. Methods Softw..

[46]  Andy J. Keane,et al.  Recent advances in surrogate-based optimization , 2009 .

[47]  Bernhard Sendhoff,et al.  Generalizing Surrogate-Assisted Evolutionary Computation , 2010, IEEE Transactions on Evolutionary Computation.

[48]  Vesa Ojalehto,et al.  An interactive multi-objective approach to heat exchanger network synthesis , 2010, Comput. Chem. Eng..

[49]  Kathrin Klamroth,et al.  Pareto navigator for interactive nonlinear multiobjective optimization , 2010, OR Spectr..

[50]  Michèle Sebag,et al.  Comparison-Based Optimizers Need Comparison-Based Surrogates , 2010, PPSN.

[51]  Yaochu Jin,et al.  Surrogate-assisted evolutionary computation: Recent advances and future challenges , 2011, Swarm Evol. Comput..

[52]  Aurore Lassauce,et al.  Deadwood as a surrogate for forest biodiversity: Meta-analysis of correlations between deadwood volume and species richness of saproxylic organisms , 2011 .

[53]  David L. Woodruff,et al.  Pyomo: modeling and solving mathematical programs in Python , 2011, Math. Program. Comput..

[54]  Kaisa Miettinen,et al.  PAINT: Pareto front interpolation for nonlinear multiobjective optimization , 2012, Comput. Optim. Appl..

[55]  Gonzalo Guillén-Gosálbez,et al.  On the use of Principal Component Analysis for reducing the number of environmental objectives in multi-objective optimization: Application to the design of chemical supply chains , 2012 .

[56]  David L. Woodruff,et al.  Pyomo — Optimization Modeling in Python , 2012, Springer Optimization and Its Applications.

[57]  Xin Yao,et al.  Using Class Imbalance Learning for Software Defect Prediction , 2013, IEEE Transactions on Reliability.

[58]  G. A. Marcoulides,et al.  Full Information Estimation in the Presence of Incomplete Data , 2013 .

[59]  Vesa Ojalehto,et al.  Implementation aspects of interactive multiobjective optimization for modeling environments: the case of GAMS-NIMBUS , 2014, Computational Optimization and Applications.

[60]  Keqiu Li,et al.  Optimized big data K-means clustering using MapReduce , 2014, The Journal of Supercomputing.

[61]  K. Miettinen,et al.  Spatially dynamic forest management to sustain biodiversity and economic returns. , 2014, Journal of environmental management.

[62]  Zahir Tari,et al.  A Survey of Clustering Algorithms for Big Data: Taxonomy and Empirical Analysis , 2014, IEEE Transactions on Emerging Topics in Computing.

[63]  Vesa Ojalehto,et al.  Coupling dynamic simulation and interactive multiobjective optimization for complex problems: An APROS-NIMBUS case study , 2014, Expert Syst. Appl..

[64]  Kaisa Miettinen,et al.  A survey on handling computationally expensive multiobjective optimization problems using surrogates: non-nature inspired methods , 2015, Structural and Multidisciplinary Optimization.

[65]  Bernhard Sendhoff,et al.  A Multiobjective Evolutionary Algorithm Using Gaussian Process-Based Inverse Modeling , 2015, IEEE Transactions on Evolutionary Computation.

[66]  Tianyou Chai,et al.  Data-Driven Optimization Control for Safety Operation of Hematite Grinding Process , 2015, IEEE Transactions on Industrial Electronics.

[67]  K. Miettinen,et al.  Managing a boreal forest landscape for providing timber, storing and sequestering carbon , 2015 .

[68]  Dan Guo,et al.  Small data driven evolutionary multi-objective optimization of fused magnesium furnaces , 2016, 2016 IEEE Symposium Series on Computational Intelligence (SSCI).

[69]  Handing Wang,et al.  Data-Driven Surrogate-Assisted Multiobjective Evolutionary Optimization of a Trauma System , 2016, IEEE Transactions on Evolutionary Computation.

[70]  Qingfu Zhang,et al.  Regularity Model for Noisy Multiobjective Optimization , 2016, IEEE Transactions on Cybernetics.

[71]  María Triviño,et al.  Managing boreal forests for the simultaneous production of collectable goods and timber revenues , 2016 .

[72]  Dmitry Podkopaev,et al.  Interactive Nonlinear Multiobjective Optimization Methods , 2016 .

[73]  María Triviño,et al.  Data from: Optimizing management to enhance multifunctionality in a boreal forest landscape , 2017, JYX.

[74]  María Triviño,et al.  Conflicting objectives in production forests pose a challenge for forest management , 2017 .

[75]  Kaisa Miettinen,et al.  Surrogate-assisted evolutionary multiobjective shape optimization of an air intake ventilation system , 2017, 2017 IEEE Congress on Evolutionary Computation (CEC).

[76]  Nirupam Chakraborti,et al.  A data-driven surrogate-assisted evolutionary algorithm applied to a many-objective blast furnace optimization problem , 2017 .

[77]  Kaisa Miettinen,et al.  ANOVA-MOP: ANOVA Decomposition for Multiobjective Optimization , 2018, SIAM J. Optim..

[78]  Kaisa Miettinen,et al.  A survey on handling computationally expensive multiobjective optimization problems with evolutionary algorithms , 2017, Soft Computing.