Tabu search algorithm for chemical process optimization

This paper presents a meta-heuristic optimization algorithm, Tabu Search (TS), and describes how it can be used to solve a wide variety of chemical engineering problems. Modifications to the original algorithm and constraint handling techniques are described and integrated to extend its applicability. All components of TS are described in detail. Initial values for each key parameter of TS are provided. In addition, guidelines for adjusting these parameters are provided to relieve a significant amount of time-consuming trial-and-error experiments that are typically required with stochastic optimization. Several small NLP and MINLP test cases and three small- to middle-scale chemical process synthesis problems demonstrate the feasibility and effectiveness of the techniques with recommended parameters.

[1]  Zbigniew Michalewicz,et al.  Evolutionary optimization of constrained problems , 1994 .

[2]  Tao Wang,et al.  Tuning Strategies in Constrained Simulated Annealing for Nonlinear Global Optimization , 2000, Int. J. Artif. Intell. Tools.

[3]  Ignacio E. Grossmann,et al.  MINLP optimization strategies and algorithms for process synthesis , 1989 .

[4]  Chunfeng Wang,et al.  Optimal design of multiproduct batch chemical processes using tabu search , 1999 .

[5]  Zbigniew Michalewicz,et al.  A Survey of Constraint Handling Techniques in Evolutionary Computation Methods , 1995 .

[6]  Yixin Chen,et al.  Constrained genetic algorithms and their applications in nonlinear constrained optimization , 2000, Proceedings 12th IEEE Internationals Conference on Tools with Artificial Intelligence. ICTAI 2000.

[7]  D. Himmelblau,et al.  Optimization of Chemical Processes , 1987 .

[8]  Michael Nikolaou,et al.  A hybrid approach to global optimization using a clustering algorithm in a genetic search framework , 1998 .

[9]  Sebastian Engell,et al.  A genetic algorithm for online-scheduling of a multiproduct polymer batch plant , 2000 .

[10]  G. E. Liepins,et al.  A Genetic Algorithm Approach to Multiple-Fault Diagnosis , 1991 .

[11]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[12]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[13]  John R. Flower,et al.  Synthesis of heat exchanger networks: II. Evolutionary generation of networks with various criteria of optimality , 1978 .

[14]  M. Randall An Empirical Study of State Encoding in Tabu Search , 2003 .

[15]  Kalyanmoy Deb,et al.  Optimization for Engineering Design: Algorithms and Examples , 2004 .

[16]  C. Coello TREATING CONSTRAINTS AS OBJECTIVES FOR SINGLE-OBJECTIVE EVOLUTIONARY OPTIMIZATION , 2000 .

[17]  N. Sahinidis,et al.  Global optimization of nonconvex NLPs and MINLPs with applications in process design , 1995 .

[18]  T. Epperly,et al.  BRANCH AND BOUND FOR GLOBAL NLP: NEW BOUNDING LP , 1996 .

[19]  Zbigniew Michalewicz,et al.  Adaptation in evolutionary computation: a survey , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[20]  T. Westerlund,et al.  Convexification of different classes of non-convex MINLP problems , 1999 .

[21]  S. Palanki,et al.  A neural network strategy for batch process optimization , 1997 .

[22]  Iftekhar A. Karimi,et al.  Preliminary design of multiproduct noncontinuous plants using simulated annealing , 1991 .

[23]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[24]  V. K. Jayaraman,et al.  Ant colony framework for optimal design and scheduling of batch plants , 2000 .

[25]  Efstratios N. Pistikopoulos,et al.  An outer-approximation algorithm for the solution of multiparametric MINLP problems , 1998 .

[26]  Urmila M. Diwekar,et al.  Optimal Design of Heat Exchangers: A Genetic Algorithm Framework , 1999 .

[27]  Fabio Schoen,et al.  Stochastic techniques for global optimization: A survey of recent advances , 1991, J. Glob. Optim..

[28]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[29]  Ian T. Cameron,et al.  Analysis of dynamic models for structural insight and model reduction—Part 2: A multi-stage compressor shutdown case-study , 1997 .

[30]  Venkat Venkatasubramanian,et al.  A genetic algorithmic framework for process design and optimization , 1991 .

[31]  Christodoulos A. Floudas,et al.  Global optimization of MINLP problems in Process Synthesis and Design , 1997 .

[32]  Gade Pandu Rangaiah,et al.  Tabu search for global optimization of continuous functions with application to phase equilibrium calculations , 2003, Comput. Chem. Eng..

[33]  Abdollah Homaifar,et al.  Constrained Optimization Via Genetic Algorithms , 1994, Simul..

[34]  I. Grossmann Global Optimization in Engineering Design , 2010 .

[35]  T. H. I. Jaakola,et al.  Optimization by direct search and systematic reduction of the size of search region , 1973 .

[36]  Hongmei Yu,et al.  A combined genetic algorithm/simulated annealing algorithm for large scale system energy integration , 2000 .

[37]  M. F. Cardoso,et al.  A simulated annealing approach to the solution of minlp problems , 1997 .

[38]  Daniel R. Lewin,et al.  A generalized method for HEN synthesis using stochastic optimization. I. General framework and MER optimal synthesis , 1998 .

[39]  Christodoulos A. Floudas,et al.  Strategies for overcoming uncertainties in heat exchanger network synthesis , 1989 .

[40]  Roberto Guardani,et al.  Neural network based approach for optimization of industrial chemical processes , 2000 .

[41]  Johannes Andries Roubos,et al.  An evolutionary strategy for fed-batch bioreactor optimization; concepts and performance , 1999 .

[42]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[43]  C. Floudas,et al.  Global optimum search for nonconvex NLP and MINLP problems , 1989 .

[44]  Zhe Wu,et al.  The Theory of Discrete Lagrange Multipliers for Nonlinear Discrete Optimization , 1999, CP.

[45]  Michel Gendreau,et al.  A tabu search heuristic for the undirected selective travelling salesman problem , 1998, Eur. J. Oper. Res..

[46]  James C. Bean,et al.  A Genetic Algorithm for the Multiple-Choice Integer Program , 1997, Oper. Res..

[47]  Zbigniew Michalewicz,et al.  Evolutionary algorithms for constrained engineering problems , 1996, Computers & Industrial Engineering.

[48]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[49]  John R. Flower,et al.  Synthesis of heat exchanger networks: I. Systematic generation of energy optimal networks , 1978 .

[50]  I. Grossmann,et al.  Relaxation strategy for the structural optimization of process flow sheets , 1987 .

[51]  Frank Pettersson,et al.  Optimization of pump configurations as a MINLP problem , 1994 .

[52]  Christopher R. Houck,et al.  On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA's , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[53]  Bahram Alidaee,et al.  Global optimization for artificial neural networks: A tabu search application , 1998, Eur. J. Oper. Res..

[54]  I. Grossmann,et al.  Global optimization of nonconvex mixed-integer nonlinear programming (MINLP) problems in process synthesis , 1988 .

[55]  C. Adjiman,et al.  Global optimization of mixed‐integer nonlinear problems , 2000 .

[56]  Keigo Watanabe,et al.  Evolutionary Optimization of Constrained Problems , 2004 .

[57]  Tao Wang,et al.  Constrained simulated annealing with applications in nonlinear continuous constrained global optimization , 1999, Proceedings 11th International Conference on Tools with Artificial Intelligence.

[58]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms for Constrained Parameter Optimization Problems , 1996, Evolutionary Computation.

[59]  Tao Wang,et al.  Simulated Annealing with Asymptotic Convergence for Nonlinear Constrained Global Optimization , 1999, CP.

[60]  Serge Domenech,et al.  Process optimization by simulated annealing and NLP procedures. Application to heat exchanger network synthesis , 1997 .

[61]  Atidel B. Hadj-Alouane,et al.  A dual genetic algorithm for bounded integer programs James C. Bean, Atidel Ben Hadj-Alouane. , 1993 .

[62]  Daniel R. Lewin,et al.  A generalized method for HEN synthesis using stochastic optimization. II. : The synthesis of cost-optimal networks , 1998 .

[63]  Giorgio Giacinto,et al.  A Tabu Search algorithm for the optimisation of telecommunication networks , 1998, Eur. J. Oper. Res..

[64]  Mahmoud M. El-Halwagi,et al.  Global optimization of nonconvex nonlinear programs via interval analysis , 1994 .