Spectral entropies as information-theoretic tools for complex network comparison

Any physical system can be viewed from the perspective that information is implicitly represented in its state. However, the quantification of this information when it comes to complex networks has remained largely elusive. In this work, we use techniques inspired by quantum statistical mechanics to define an entropy measure for complex networks and to develop a set of information-theoretic tools, based on network spectral properties, such as Renyi q-entropy, generalized Kullback-Leibler and Jensen-Shannon divergences, the latter allowing us to define a natural distance measure between complex networks. First we show that by minimizing the Kullback-Leibler divergence between an observed network and a parametric network model, inference of model parameter(s) by means of maximum-likelihood estimation can be achieved and model selection can be performed appropriate information criteria. Second, we show that the information-theoretic metric quantifies the distance between pairs of networks and we can use it, for instance, to cluster the layers of a multilayer system. By applying this framework to networks corresponding to sites of the human microbiome, we perform hierarchical cluster analysis and recover with high accuracy existing community-based associations. Our results imply that spectral based statistical inference in complex networks results in demonstrably superior performance as well as a conceptual backbone, filling a gap towards a network information theory.

[1]  Martin Rosvall,et al.  An information-theoretic framework for resolving community structure in complex networks , 2007, Proceedings of the National Academy of Sciences.

[2]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[3]  Ali Jadbabaie,et al.  IEEE Transactions on Network Science and Engineering , 2014, IEEE Trans. Netw. Sci. Eng..

[4]  Mason A. Porter,et al.  Multilayer networks , 2013, J. Complex Networks.

[5]  Alexandre Arenas,et al.  Identifying modular flows on multilayer networks reveals highly overlapping organization in social systems , 2014, ArXiv.

[6]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[7]  Bogdan Damski,et al.  Quantum fidelity in the thermodynamic limit. , 2010, Physical review letters.

[8]  Kathryn B. Laskey,et al.  Stochastic blockmodels: First steps , 1983 .

[9]  Ivan Gutman,et al.  Lower bounds for Estrada index and Laplacian Estrada index , 2010, Appl. Math. Lett..

[10]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[11]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[12]  Howard E. Brandt,et al.  Quantum computation and information : AMS Special Session Quantum Computation and Information, January 19-21, 2000, Washington, D.C. , 2002 .

[13]  F. Franchini,et al.  Renyi entropy of the XY spin chain , 2007, 0707.2534.

[14]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[15]  A. Arenas,et al.  Mathematical Formulation of Multilayer Networks , 2013, 1307.4977.

[16]  G. Bianconi,et al.  Differential network entropy reveals cancer system hallmarks , 2012, Scientific Reports.

[17]  A. Arenas,et al.  Abrupt transition in the structural formation of interconnected networks , 2013, Nature Physics.

[18]  Péter Csermely,et al.  A unified data representation theory for network visualization, ordering and coarse-graining , 2014, Scientific Reports.

[19]  C. R. Rao,et al.  Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .

[20]  Jorma Rissanen,et al.  Fisher information and stochastic complexity , 1996, IEEE Trans. Inf. Theory.

[21]  Martí Cuquet,et al.  Entanglement percolation in quantum complex networks. , 2009, Physical review letters.

[22]  Marco Lanzagorta,et al.  Tensor network methods for invariant theory , 2012, 1209.0631.

[23]  Mark A. Pitt,et al.  Toward a method of selecting among computational models of cognition. , 2002 .

[24]  Albert-László Barabási,et al.  Controllability of complex networks , 2011, Nature.

[25]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[26]  William Bialek,et al.  Entropy and Information in Neural Spike Trains , 1996, cond-mat/9603127.

[27]  Daniel A. Lidar,et al.  Intrinsic geometry of quantum adiabatic evolution and quantum phase transitions , 2010, 1004.0509.

[28]  V. Vedral The role of relative entropy in quantum information theory , 2001, quant-ph/0102094.

[29]  Ville Bergholm,et al.  Community Detection in Quantum Complex Networks , 2013, 1310.6638.

[30]  Sabre Kais,et al.  Degree distribution in quantum walks on complex networks , 2013, 1305.6078.

[31]  Alessandro Vespignani,et al.  Detecting rich-club ordering in complex networks , 2006, physics/0602134.

[32]  Shun-ichi Amari,et al.  Information geometry of the EM and em algorithms for neural networks , 1995, Neural Networks.

[33]  Harry Eugene Stanley,et al.  Catastrophic cascade of failures in interdependent networks , 2009, Nature.

[34]  D. Cory,et al.  Hamiltonian learning and certification using quantum resources. , 2013, Physical review letters.

[35]  H. Stanley,et al.  Networks formed from interdependent networks , 2011, Nature Physics.

[36]  C. W. Helstrom,et al.  Minimum mean-squared error of estimates in quantum statistics , 1967 .

[37]  Albert Solé-Ribalta,et al.  Navigability of interconnected networks under random failures , 2013, Proceedings of the National Academy of Sciences.

[38]  Martin Rosvall,et al.  Compression of flow can reveal overlapping modular organization in networks , 2011, ArXiv.

[39]  A. Plastino,et al.  Metric character of the quantum Jensen-Shannon divergence , 2008, 0801.1586.

[40]  Nathan Wiebe,et al.  Robust online Hamiltonian learning , 2012, TQC.

[41]  Alex Arenas,et al.  Synchronization reveals topological scales in complex networks. , 2006, Physical review letters.

[42]  Carl T. Bergstrom,et al.  Mapping Change in Large Networks , 2008, PloS one.

[43]  Vito Latora,et al.  Structural reducibility of multilayer networks , 2015, Nature Communications.

[44]  Peter Zoller,et al.  Measuring multipartite entanglement through dynamic susceptibilities , 2015, Nature Physics.

[45]  D. Bures An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite *-algebras , 1969 .

[46]  Tiago P Peixoto,et al.  Parsimonious module inference in large networks. , 2012, Physical review letters.

[47]  Jing Liu,et al.  Quantum Fisher Information of Entangled Coherent States in a Lossy Mach-Zehnder Interferometer , 2013, 1307.8009.

[48]  Alessandro Vespignani Modelling dynamical processes in complex socio-technical systems , 2011, Nature Physics.

[49]  Albert-László Barabási,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[50]  P. W. Lamberti,et al.  Jensen-Shannon divergence as a measure of distinguishability between mixed quantum states , 2005, quant-ph/0508138.

[51]  Augusto Smerzi,et al.  Fisher information and entanglement of non-Gaussian spin states , 2014, Science.

[52]  Mark E. J. Newman,et al.  Structure and inference in annotated networks , 2015, Nature Communications.

[53]  Matthias Dehmer,et al.  INFORMATION-THEORETIC CONCEPTS FOR THE ANALYSIS OF COMPLEX NETWORKS , 2008, Appl. Artif. Intell..

[54]  G. Bianconi,et al.  Shannon and von Neumann entropy of random networks with heterogeneous expected degree. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[55]  Ginestra Bianconi,et al.  Mesoscopic Structures Reveal the Network Between the Layers of Multiplex Datasets , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  Ernesto Estrada,et al.  Communicability reveals a transition to coordinated behavior in multiplex networks , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  Jukka-Pekka Onnela,et al.  Community Structure in Time-Dependent, Multiscale, and Multiplex Networks , 2009, Science.

[58]  J. Cirac,et al.  Entanglement percolation in quantum networks , 2006, quant-ph/0612167.

[59]  Dane Taylor,et al.  Enhanced detectability of community structure in multilayer networks through layer aggregation , 2015, Physical review letters.

[60]  Dane Taylor,et al.  Clustering Network Layers with the Strata Multilayer Stochastic Block Model , 2015, IEEE Transactions on Network Science and Engineering.

[61]  Mark E. J. Newman,et al.  Stochastic blockmodels and community structure in networks , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[62]  Jukka-Pekka Onnela,et al.  Taxonomies of networks from community structure. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  Ernesto Estrada,et al.  Communicability in complex networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[64]  Florent Krzakala,et al.  Statistical physics of inference: thresholds and algorithms , 2015, ArXiv.

[65]  P. Schloss,et al.  Dynamics and associations of microbial community types across the human body , 2014, Nature.

[66]  Marián Boguñá,et al.  Navigability of Complex Networks , 2007, ArXiv.

[67]  Stefan Bornholdt,et al.  Evolution of robust network topologies: Emergence of central backbones , 2012, Physical review letters.

[68]  Peter W. Shor,et al.  Quantum Information Theory , 1998, IEEE Trans. Inf. Theory.

[69]  Peter Harremoës,et al.  Properties of Classical and Quantum Jensen-Shannon Divergence , 2009 .

[70]  T. Vicsek,et al.  Uncovering the overlapping community structure of complex networks in nature and society , 2005, Nature.

[71]  S. Havlin,et al.  Self-similarity of complex networks , 2005, Nature.

[72]  Martin Rosvall,et al.  Maps of random walks on complex networks reveal community structure , 2007, Proceedings of the National Academy of Sciences.

[73]  Alex Arenas,et al.  Mapping Multiplex Hubs in Human Functional Brain Networks , 2016, Front. Neurosci..

[74]  Ernesto Estrada,et al.  Walk entropies in graphs , 2013, 1303.6203.

[75]  P. Pin,et al.  Assessing the relevance of node features for network structure , 2008, Proceedings of the National Academy of Sciences.

[76]  Jean-Charles Delvenne,et al.  Stability of graph communities across time scales , 2008, Proceedings of the National Academy of Sciences.

[77]  Ernesto Estrada,et al.  Communicability and multipartite structures in complex networks at negative absolute temperatures. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[78]  Mark M. Wilde,et al.  Quantum Information Theory , 2013 .

[79]  Z. Wang,et al.  The structure and dynamics of multilayer networks , 2014, Physics Reports.

[80]  Ernesto Estrada,et al.  Statistical-mechanical approach to subgraph centrality in complex networks , 2007, 0905.4098.

[81]  Cristopher Moore,et al.  Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[82]  Tiago P. Peixoto Model selection and hypothesis testing for large-scale network models with overlapping groups , 2014, ArXiv.

[83]  Enrico Giampieri,et al.  Multiscale characterization of ageing and cancer progression by a novel network entropy measure. , 2015, Molecular bioSystems.

[84]  Michele Benzi,et al.  The Physics of Communicability in Complex Networks , 2011, ArXiv.

[85]  Mark C. Parsons,et al.  Communicability across evolving networks. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[86]  H E Stanley,et al.  Linguistic features of noncoding DNA sequences. , 1994, Physical review letters.

[87]  Alexander Borst,et al.  Information theory and neural coding , 1999, Nature Neuroscience.

[88]  D S Callaway,et al.  Network robustness and fragility: percolation on random graphs. , 2000, Physical review letters.

[89]  Ernesto Estrada,et al.  Maximum walk entropy implies walk regularity , 2014, 1406.5056.

[90]  M. Wilde Quantum Information Theory: Noisy Quantum Shannon Theory , 2013 .

[91]  J. Eisert,et al.  Area laws for the entanglement entropy - a review , 2008, 0808.3773.

[92]  Ernesto Estrada,et al.  Journal of Complex Networks: Quo Vadis? , 2013, J. Complex Networks.

[93]  S. Perseguers,et al.  Quantum random networks , 2009, 0907.3283.

[94]  Robert A. van de Geijn,et al.  A Parallel Eigensolver for Dense Symmetric Matrices Based on Multiple Relatively Robust Representations , 2005, SIAM J. Sci. Comput..

[95]  M. Hübner Explicit computation of the Bures distance for density matrices , 1992 .

[96]  Desmond J. Higham,et al.  Network Properties Revealed through Matrix Functions , 2010, SIAM Rev..

[97]  N. Eagle,et al.  Network Diversity and Economic Development , 2010, Science.

[98]  A. Wehrl General properties of entropy , 1978 .

[99]  H E Stanley,et al.  Finding borders between coding and noncoding DNA regions by an entropic segmentation method. , 2000, Physical review letters.

[100]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[101]  Martin Rosvall,et al.  Memory in network flows and its effects on spreading dynamics and community detection , 2013, Nature Communications.

[102]  Shun-ichi Amari,et al.  Information geometry on hierarchy of probability distributions , 2001, IEEE Trans. Inf. Theory.

[103]  Eduardo G. Altmann,et al.  On the similarity of symbol frequency distributions with heavy tails , 2015, ArXiv.

[104]  Paolo Zanardi,et al.  Information-theoretic differential geometry of quantum phase transitions. , 2007, Physical review letters.

[105]  R. Guimerà,et al.  Functional cartography of complex metabolic networks , 2005, Nature.

[106]  Mason A. Porter,et al.  Author Correction: The physics of spreading processes in multilayer networks , 2016, 1604.02021.

[107]  Alex Monras,et al.  Information geometry of Gaussian channels , 2009, 0911.1558.

[108]  Martin Brown,et al.  Information-theoretic sensitivity analysis: a general method for credit assignment in complex networks , 2007, Journal of The Royal Society Interface.

[109]  M. A. Muñoz,et al.  Entropic origin of disassortativity in complex networks. , 2010, Physical review letters.

[110]  S. Severini,et al.  The Laplacian of a Graph as a Density Matrix: A Basic Combinatorial Approach to Separability of Mixed States , 2004, quant-ph/0406165.

[111]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.