Drosophila mutants disturbed in visual orientation

[1]  H. Bülthoff,et al.  Recurrent inversion of visual orientation in the walking fly,Drosophila melanogaster , 1982, Journal of comparative physiology.

[2]  E. Buchner,et al.  Functional neuroanatomical mapping in insects by [3H]2-deoxy-D-glucose at electron microscopical resolution , 1982, Neuroscience Letters.

[3]  Heinrich Bülthoff,et al.  Figure-ground discrimination in the visual system ofDrosophila melanogaster , 1981, Biological Cybernetics.

[4]  W. Reichardt,et al.  Visual fixation and tracking by flies: Mathematical properties of simple control systems , 1981, Biological Cybernetics.

[5]  G. Geiger Is there a motion-independent position computation of an object in the visual system of the housefly? , 1981, Biological Cybernetics.

[6]  M Heisenberg,et al.  Structural brain mutant of Drosophila melanogaster with reduced cell number in the medulla cortex and with normal optomotor yaw response. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Christian Wehrhahn,et al.  How is tracking and fixation accomplished in the nervous system of the fly? , 1980, Biological Cybernetics.

[8]  T. Poggio,et al.  3-D Analysis of the Flight Trajectories of Flies (Drosophila melanogaster) , 1980 .

[9]  T. Poggio,et al.  On the representation of multi-input systems: Computational properties of polynomial algorithms , 1980, Biological Cybernetics.

[10]  Nicholas J. Strausfeld,et al.  Sexually dimorphic interneuron arrangements in the fly visual system , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[11]  R. Cook The extent of visual control in the courtship tracking of D. melanogaster , 1980, Biological Cybernetics.

[12]  C. Wehrhahn,et al.  Sex-specific differences in the chasing behaviour of houseflies (Musca) , 1979, Biological Cybernetics.

[13]  R. Cook The courtship tracking of Drosophila melanogaster , 1979, Biological Cybernetics.

[14]  R. Hengstenberg,et al.  2-Deoxy-D-glucose maps movement-specific nervous activity in the second visual ganglion of Drosophila. , 1979, Science.

[15]  R. Wolf,et al.  On the fine structure of yaw torque in visual flight orientation ofDrosophila melanogaster , 1979, Journal of comparative physiology.

[16]  R. Wolf,et al.  Optomotor-blindH31—aDrosophila mutant of the lobula plate giant neurons , 1978, Journal of comparative physiology.

[17]  Erich Buchner,et al.  Evidence for one-way movement detection in the visual system of Drosophila , 1978, Biological Cybernetics.

[18]  M. Reivich,et al.  THE [14C]DEOXYGLUCOSE METHOD FOR THE MEASUREMENT OF LOCAL CEREBRAL GLUCOSE UTILIZATION: THEORY, PROCEDURE, AND NORMAL VALUES IN THE CONSCIOUS AND ANESTHETIZED ALBINO RAT 1 , 1977, Journal of neurochemistry.

[19]  N. Franceschini,et al.  Le contrôle automatique du flux lumineux dans l'oeil composé des Diptères , 1976, Biological Cybernetics.

[20]  B. Pick,et al.  Visual pattern discrimination as an element of the fly's orientation behaviour , 1976, Biological Cybernetics.

[21]  W Reichardt,et al.  Visual control of orientation behaviour in the fly: Part I. A quantitative analysis , 1976, Quarterly Reviews of Biophysics.

[22]  E. Buchner Elementary movement detectors in an insect visual system , 1976, Biological Cybernetics.

[23]  W. Reichardt,et al.  Detection and tracking of moving objects by the fly Musca domestica , 1976, Biological Cybernetics.

[24]  Karl Georg Götz,et al.  Hirnforschung am Navigationssystem der Fliegen , 1975, Naturwissenschaften.

[25]  M. Heisenberg,et al.  The use of mutations for the partial degradation of vision inDrosophila melanogaster , 1975, Journal of comparative physiology.

[26]  Tomaso Poggio,et al.  The orientation of flies towards visual patterns: On the search for the underlying functional interactions , 1975, Biological Cybernetics.

[27]  Werner Reichardt,et al.  A theory of the pattern induced flight orientation of the fly Musca domestica II , 1975, Biological Cybernetics.

[28]  T. Collett,et al.  Visual control of flight behaviour in the hoverflySyritta pipiens L. , 1975, Journal of comparative physiology.

[29]  T. Collett,et al.  Chasing behaviour of houseflies (Fannia canicularis) , 1974, Journal of comparative physiology.

[30]  Bernward Pick,et al.  Visual Flicker Induces Orientation Behaviour in the Fly Musca , 1974 .

[31]  W. Reichardt,et al.  Tracking of moving objects by the flyMusca domestica , 1974, Naturwissenschaften.

[32]  Karl Georg Götz,et al.  Visual control of locomotion in the walking fruitflyDrosophila , 1973, Journal of comparative physiology.

[33]  Werner Reichardt,et al.  Musterinduzierte Flugorientierung , 1973, Naturwissenschaften.

[34]  N. Franceschini,et al.  Les phénomènes de pseudopupille dans l'œil composé deDrosophila , 1971, Kybernetik.

[35]  M Heisenberg,et al.  Separation of receptor and lamina potentials in the electroretinogram of normal and mutant Drosophila. , 1971, The Journal of experimental biology.

[36]  Werner Reichardt,et al.  Optical detection and fixation of objects by fixed flying flies , 1969, Naturwissenschaften.

[37]  W. D. Kaplan,et al.  The behavior of four neurological mutants of Drosophila. , 1969, Genetics.

[38]  Karl Georg Götz,et al.  Flight control in Drosophila by visual perception of motion , 1968, Kybernetik.

[39]  S. Benzer BEHAVIORAL MUTANTS OF Drosophila ISOLATED BY COUNTERCURRENT DISTRIBUTION. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Roland Hengstenberg,et al.  Der Einflu\ des Schirmpigmentgehalts auf die Helligkeits- und Kontrastwahrnehmung bei Drosophila-Augenmutanten , 1967, Kybernetik.

[41]  Karl Geokg Götz,et al.  Optomotorische Untersuchung des visuellen systems einiger Augenmutanten der Fruchtfliege Drosophila , 1964, Kybernetik.

[42]  N. Hadler GENETIC INFLUENCE ON PHOTOTAXIS IN DROSOPHILA MELANOGASTER , 1964 .

[43]  T. Poggio,et al.  A theory of the pattern induced flight orientation of the fly Musca domestica , 2004, Kybernetik.

[44]  E. Buchner,et al.  Mapping stimulus-induced nervous activity in small brains by [3H]2-deoxy-D-glucose , 2004, Cell and Tissue Research.

[45]  Martin Heisenberg,et al.  The rôle of retinula cell types in visual behavior ofDrosophila melanogaster , 2004, Journal of comparative physiology.

[46]  N. Franceschini,et al.  Etude optique in vivo des éléments photorécepteurs dans l'œil composé de Drosophila , 2004, Kybernetik.

[47]  G. Geiger Optomotor responses of the fly Musca domestica to transient stimuli of edges and stripes , 2004, Kybernetik.

[48]  R. Wolf,et al.  On the fine structure of yaw torque in visual flight orientation ofDrosophila melanogaster , 2004, Journal of comparative physiology.

[49]  W. Reichardt,et al.  Visual control of flight in flies , 1981 .

[50]  K. Götz,et al.  Visual guidance in Drosophila. In: Development and Neurobiology of Drosophila , 1980 .

[51]  K. Götz Visual guidance in Drosophila. , 1980, Basic life sciences.

[52]  Martin Heisenberg,et al.  Genetic Approach to a Visual System , 1979 .

[53]  W. Pak Mutations Affecting the Vision of Drosophila melanogaster , 1975 .

[54]  Gary D. Bernard,et al.  THE VISUAL SYSTEM OF INSECTS , 1974 .

[55]  M. Heisenberg Behavioral Diagnostics: a Way to Analyze Visual Mutants of Drosophila , 1972 .

[56]  M Heisenberg,et al.  Isolation of mutants lacking the optomotor response , 1971 .

[57]  A. Manning,et al.  The Courtship of Drosophila Melanogaster , 1955 .