Anomaly Detection Methods for Categorical Data

Anomaly detection has numerous applications in diverse fields. For example, it has been widely used for discovering network intrusions and malicious events. It has also been used in numerous other applications such as identifying medical malpractice or credit fraud. Detection of anomalies in quantitative data has received a considerable attention in the literature and has a venerable history. By contrast, and despite the widespread availability use of categorical data in practice, anomaly detection in categorical data has received relatively little attention as compared to quantitative data. This is because detection of anomalies in categorical data is a challenging problem. Some anomaly detection techniques depend on identifying a representative pattern then measuring distances between objects and this pattern. Objects that are far from this pattern are declared as anomalies. However, identifying patterns and measuring distances are not easy in categorical data compared with quantitative data. Fortunately, several papers focussing on the detection of anomalies in categorical data have been published in the recent literature. In this article, we provide a comprehensive review of the research on the anomaly detection problem in categorical data. Previous review articles focus on either the statistics literature or the machine learning and computer science literature. This review article combines both literatures. We review 36 methods for the detection of anomalies in categorical data in both literatures and classify them into 12 different categories based on the conceptual definition of anomalies they use. For each approach, we survey anomaly detection methods, and then show the similarities and differences among them. We emphasize two important issues, the number of parameters each method requires and its time complexity. The first issue is critical, because the performance of these methods are sensitive to the choice of these parameters. The time complexity is also very important in real applications especially in big data applications. We report the time complexity if it is reported by the authors of the methods. If it is not, then we derive it ourselves and report it in this article. In addition, we discuss the common problems and the future directions of the anomaly detection in categorical data.

[1]  Jugal K. Kalita,et al.  A Survey of Outlier Detection Methods in Network Anomaly Identification , 2011, Comput. J..

[2]  Yizhou Sun,et al.  On community outliers and their efficient detection in information networks , 2010, KDD.

[3]  Steve Harenberg,et al.  Anomaly detection in dynamic networks: a survey , 2015 .

[4]  Wobbe P. Zijlstra,et al.  Outliers in Questionnaire Data , 2011 .

[5]  Georgios C. Anagnostopoulos,et al.  A Scalable and Efficient Outlier Detection Strategy for Categorical Data , 2007, 19th IEEE International Conference on Tools with Artificial Intelligence(ICTAI 2007).

[6]  E. Forgy,et al.  Cluster analysis of multivariate data : efficiency versus interpretability of classifications , 1965 .

[7]  Charu C. Aggarwal,et al.  Outlier Detection for Temporal Data , 2014, Outlier Detection for Temporal Data.

[8]  Damminda Alahakoon,et al.  Minority report in fraud detection: classification of skewed data , 2004, SKDD.

[9]  J. A. Díaz-García,et al.  SENSITIVITY ANALYSIS IN LINEAR REGRESSION , 2022 .

[10]  Bhagyashree Umale,et al.  Overview of K-means and Expectation Maximization Algorithm for Document Clustering , 2014 .

[11]  M.M. Deris,et al.  A Comparative Study for Outlier Detection Techniques in Data Mining , 2006, 2006 IEEE Conference on Cybernetics and Intelligent Systems.

[12]  Yun Wang,et al.  Statistical Techniques for Network Security: Modern Statistically-Based Intrusion Detection and Protection , 2008 .

[13]  Ruggero G. Pensa,et al.  From Context to Distance: Learning Dissimilarity for Categorical Data Clustering , 2012, TKDD.

[14]  Shengrui Wang,et al.  Parameter-Free Anomaly Detection for Categorical Data , 2011, MLDM.

[15]  R. A. Doney,et al.  4. Probability and Random Processes , 1993 .

[16]  Tony Bailetti,et al.  Intrusion Learning: An Overview of an Emergent Discipline , 2016 .

[17]  Mukesh K. Deshmukh A Survey On Outlier Detection Technique In Streaming Data Using Data Clustering Approach , 2016 .

[18]  Sanjay Chawla,et al.  SLOM: a new measure for local spatial outliers , 2006, Knowledge and Information Systems.

[19]  Qinghua Zheng,et al.  The Research of Mining Association Rules Between Personality and Behavior of Learner Under Web-Based Learning Environment , 2005, ICWL.

[20]  Zengyou He,et al.  FP-outlier: Frequent pattern based outlier detection , 2005, Comput. Sci. Inf. Syst..

[21]  Enrique F. Castillo,et al.  Expert Systems and Probabilistic Network Models , 1996, Monographs in Computer Science.

[22]  Jeff G. Schneider,et al.  Anomaly pattern detection in categorical datasets , 2008, KDD.

[23]  Sridhar Ramaswamy,et al.  Efficient algorithms for mining outliers from large data sets , 2000, SIGMOD '00.

[24]  P. McCullagh Analysis of Ordinal Categorical Data , 1985 .

[25]  Alka P.Beldar and Vinod S.Wadne The Detail Survey of Anomaly/Outlier Detection Methods in Data Mining , 2015 .

[26]  Xiuzhen Zhang,et al.  Anomaly detection in online social networks , 2014, Soc. Networks.

[27]  M. Narasimha Murty,et al.  A ranking-based algorithm for detection of outliers in categorical data , 2014, Int. J. Hybrid Intell. Syst..

[28]  Clara Pizzuti,et al.  Distance-based detection and prediction of outliers , 2006, IEEE Transactions on Knowledge and Data Engineering.

[29]  E. Winarko,et al.  IMPROVING THE PERFORMANCE OF OUTLIER DETECTION METHODS FOR CATEGORICAL DATA BY USING WEIGHTING FUNCTION , 2016 .

[30]  Marc Dacier,et al.  Towards a taxonomy of intrusion-detection systems , 1999, Comput. Networks.

[31]  Tanvi Varma,et al.  A Review of various statestical methods for Outlier Detection , 2014 .

[32]  Anazida Zainal,et al.  Advancements of Data Anomaly Detection Research in Wireless Sensor Networks: A Survey and Open Issues , 2013, Sensors.

[33]  Philip S. Yu,et al.  Outlier detection for high dimensional data , 2001, SIGMOD '01.

[34]  Kate Smith-Miles,et al.  A Comprehensive Survey of Data Mining-based Fraud Detection Research , 2010, ArXiv.

[35]  S. Parthasarathy,et al.  An Empirical Comparison of Outlier Detection Algorithms , 2022 .

[36]  Srinivasan Parthasarathy,et al.  Fast Distributed Outlier Detection in Mixed-Attribute Data Sets , 2006, Data Mining and Knowledge Discovery.

[37]  Hui Xiong,et al.  Top-Eye: top-k evolving trajectory outlier detection , 2010, CIKM.

[38]  R. Devi,et al.  Hubness in Unsupervised Outlier Detection Techniques for High Dimensional Data –A Survey , 2015 .

[39]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[40]  Maumita Bhattacharya,et al.  Intelligent Financial Fraud Detection: A Comprehensive Review , 2015 .

[41]  Jilles Vreeken,et al.  The Odd One Out: Identifying and Characterising Anomalies , 2011, SDM.

[42]  Eric J. Beh,et al.  Simple Correspondence Analysis of Nominal-Ordinal Contingency Tables , 2008, Adv. Decis. Sci..

[43]  Charles F. Hockett,et al.  A mathematical theory of communication , 1948, MOCO.

[44]  Dhiren Ghosh,et al.  Outliers : An Evaluation of Methodologies , 2012 .

[45]  Takafumi Kanamori,et al.  Statistical outlier detection using direct density ratio estimation , 2011, Knowledge and Information Systems.

[46]  Jaideep Srivastava,et al.  Data Mining for Network Intrusion Detection , 2002 .

[47]  Srinivasan Parthasarathy,et al.  Fast mining of distance-based outliers in high-dimensional datasets , 2008, Data Mining and Knowledge Discovery.

[48]  Leonid A. Kalinichenko,et al.  Методы выявления аномалий: обзор (Methods for Anomaly Detection: a Survey) , 2014, RCDL.

[49]  Dhanapal Durai Dominic,et al.  Outlier Detection Scoring Measurements Based on Frequent Pattern Technique , 2013 .

[50]  Ji Zhang,et al.  Advancements of Outlier Detection: A Survey , 2013, EAI Endorsed Trans. Scalable Inf. Syst..

[51]  Sameer Singh,et al.  Novelty detection: a review - part 2: : neural network based approaches , 2003, Signal Process..

[52]  Hiroyuki Kitagawa,et al.  Detecting Outliers in Categorical Record Databases Based on Attribute Associations , 2008, APWeb.

[53]  Ali S. Hadi,et al.  Detection of outliers , 2009 .

[54]  Ching-Yung Lin,et al.  A Survey on Social Media Anomaly Detection , 2016, SIGKDD Explor..

[55]  Amruta D. Pawar,et al.  A Survey on Outlier Detection Techniques for Credit Card Fraud Detection , 2014 .

[56]  Ayman Taha,et al.  A proposed outliers identification algorithm for categorical data sets , 2010, 2010 The 7th International Conference on Informatics and Systems (INFOS).

[57]  George Karypis,et al.  A Comprehensive Survey of Neighborhood-based Recommendation Methods , 2011, Recommender Systems Handbook.

[58]  Raghav M. Purankar A Survey paper on An Effective Analytical Approaches for Detecting Outlier in Continuous Time Variant Data Stream , 2016 .

[59]  Xiao Qin,et al.  Weighted Outlier Detection of High-Dimensional Categorical Data Using Feature Grouping , 2020, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[60]  Christos Faloutsos,et al.  Fast and reliable anomaly detection in categorical data , 2012, CIKM.

[61]  Saad B. Qaisar,et al.  Characteristics and classification of outlier detection techniques for wireless sensor networks in harsh environments: a survey , 2012, Artificial Intelligence Review.

[62]  Ivy Liu,et al.  Analysis of Ordinal Categorical Data, 2nd edn by Alan Agresti , 2011 .

[63]  Kanishka Bhaduri,et al.  Algorithms for speeding up distance-based outlier detection , 2011, KDD.

[64]  S. Mukhopadhyay,et al.  Activity and Anomaly Detection in Smart Home: A Survey , 2016 .

[65]  Ashwini G. Sagade,et al.  EXCESS ENTROPY BASED OUTLIER DETECTION IN CATEGORICAL DATA SET , 2014 .

[66]  Vipin Kumar,et al.  A Framework for Exploring Categorical Data , 2009, SDM.

[67]  HyungJun Cho,et al.  Outlier Detection for Mass Spectrometric Data. , 2016, Methods in molecular biology.

[68]  Avinash Chandra Pandey,et al.  Outlier detection: A survey on techniques of WSNs involving event and error based outliers , 2014, 2014 Innovative Applications of Computational Intelligence on Power, Energy and Controls with their impact on Humanity (CIPECH).

[69]  Edmundo Monteiro,et al.  A survey on security attacks and countermeasures with primary user detection in cognitive radio networks , 2015, EURASIP J. Inf. Secur..

[70]  S. Chatterjee,et al.  Influential Observations, High Leverage Points, and Outliers in Linear Regression , 1986 .

[71]  Ruggero G. Pensa,et al.  A Semisupervised Approach to the Detection and Characterization of Outliers in Categorical Data , 2017, IEEE Transactions on Neural Networks and Learning Systems.

[72]  Joshua Zhexue Huang,et al.  A Fast Clustering Algorithm to Cluster Very Large Categorical Data Sets in Data Mining , 1997, DMKD.

[74]  Jaideep Srivastava,et al.  A Comparative Study of Anomaly Detection Schemes in Network Intrusion Detection , 2003, SDM.

[75]  Plamen P. Angelov,et al.  A comparative study of autonomous learning outlier detection methods applied to fault detection , 2015, 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

[76]  Hui Wang,et al.  A clustering-based method for unsupervised intrusion detections , 2006, Pattern Recognit. Lett..

[77]  Jian Guo,et al.  A New Feature Extraction Algorithm Based on Entropy Cloud Characteristics of Communication Signals , 2015 .

[78]  Christopher D. Manning,et al.  Introduction to Information Retrieval , 2010, J. Assoc. Inf. Sci. Technol..

[79]  Bernhard Schölkopf,et al.  Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.

[80]  A. Hadi,et al.  BACON: blocked adaptive computationally efficient outlier nominators , 2000 .

[81]  A. Govardhan,et al.  Outlier Analysis of Categorical Data using NAVF , 2013 .

[82]  Carla E. Brodley,et al.  FRaC: a feature-modeling approach for semi-supervised and unsupervised anomaly detection , 2012, Data Mining and Knowledge Discovery.

[83]  Ali S. Hadi,et al.  A general approach for automating outliers identification in categorical data , 2013, 2013 ACS International Conference on Computer Systems and Applications (AICCSA).

[84]  Christian Böhm,et al.  CoCo: coding cost for parameter-free outlier detection , 2009, KDD.

[85]  Pang-Ning Tan,et al.  Detection and Characterization of Anomalies in Multivariate Time Series , 2009, SDM.

[86]  Michael Georgiopoulos,et al.  Non-derivable itemsets for fast outlier detection in large high-dimensional categorical data , 2011, Knowledge and Information Systems.

[87]  Denis Cousineau,et al.  Outliers detection and treatment: a review , 2010 .

[88]  Hongjun Lu,et al.  Finding centric local outliers in categorical/numerical spaces , 2006, Knowledge and Information Systems.

[89]  Carla E. Brodley,et al.  Anomaly Detection Using an Ensemble of Feature Models , 2010, 2010 IEEE International Conference on Data Mining.

[90]  Danai Koutra,et al.  Graph based anomaly detection and description: a survey , 2014, Data Mining and Knowledge Discovery.

[91]  Yong Yan,et al.  Monitoring of oxygen content in flue gas at coal fired power plant using cloud modeling techniques , 2012, 2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings.

[92]  S. Chatterjee Sensitivity analysis in linear regression , 1988 .

[93]  Josef Schmee,et al.  Outliers in Statistical Data (2nd ed.) , 1986 .

[94]  Shizuhiko Nishisato,et al.  Elements of Dual Scaling: An Introduction To Practical Data Analysis , 1993 .

[95]  Raymond T. Ng,et al.  A unified approach for mining outliers , 1997, CASCON.

[96]  Rodrigo Roman,et al.  On the Vital Areas of Intrusion Detection Systems in Wireless Sensor Networks , 2013, IEEE Communications Surveys & Tutorials.

[97]  Philip S. Yu,et al.  Outlier detection in graph streams , 2011, 2011 IEEE 27th International Conference on Data Engineering.

[98]  Vipin Kumar,et al.  Anomaly Detection for Discrete Sequences: A Survey , 2012, IEEE Transactions on Knowledge and Data Engineering.

[99]  Shigeng Zhang,et al.  Outlier Detection Techniques for Localization in Wireless Sensor Networks: A Survey , 2015 .

[100]  Srinivasan Parthasarathy,et al.  LOADED: link-based outlier and anomaly detection in evolving data sets , 2004, Fourth IEEE International Conference on Data Mining (ICDM'04).

[101]  Dajiang Lei,et al.  Cloud Model-based Outlier Detection Algorithm for Categorical Data , 2013 .

[102]  A. Hadi A Modification of a Method for the Detection of Outliers in Multivariate Samples , 1994 .

[103]  Raymond T. Ng,et al.  Distance-based outliers: algorithms and applications , 2000, The VLDB Journal.

[104]  Chang-Tien Lu,et al.  On detecting spatial categorical outliers , 2014, GeoInformatica.

[105]  Mohiuddin Ahmed,et al.  A survey of network anomaly detection techniques , 2016, J. Netw. Comput. Appl..

[106]  Mohamed Bouguessa,et al.  A practical outlier detection approach for mixed-attribute data , 2015, Expert Syst. Appl..

[107]  Ling Chen,et al.  Outlier Detection in Complex Categorical Data by Modeling the Feature Value Couplings , 2016, IJCAI.

[108]  Junhee Seok,et al.  Mutual Information between Discrete Variables with Many Categories using Recursive Adaptive Partitioning , 2015, Scientific Reports.

[109]  Vipin Kumar,et al.  Similarity Measures for Categorical Data: A Comparative Evaluation , 2008, SDM.

[110]  Anazida Zainal,et al.  A Survey of Intrusion Detection Schemes in Wireless Sensor Networks , 2012 .

[111]  Charu C. Aggarwal,et al.  Outlier Analysis , 2013, Springer New York.

[112]  Victoria J. Hodge,et al.  A Survey of Outlier Detection Methodologies , 2004, Artificial Intelligence Review.

[113]  Shengrui Wang,et al.  Information-Theoretic Outlier Detection for Large-Scale Categorical Data , 2013, IEEE Transactions on Knowledge and Data Engineering.

[114]  Clara Pizzuti,et al.  Fast Outlier Detection in High Dimensional Spaces , 2002, PKDD.

[115]  Michael K. Ng,et al.  A fuzzy k-modes algorithm for clustering categorical data , 1999, IEEE Trans. Fuzzy Syst..

[116]  M. Narasimha Murty,et al.  A Rough Clustering Algorithm for Mining Outliers in Categorical Data , 2013, PReMI.

[117]  Mohamed Bouguessa A Mixture Model-Based Combination Approach for Outlier Detection , 2014, Int. J. Artif. Intell. Tools.

[118]  Arif Sari,et al.  A Review of Anomaly Detection Systems in Cloud Networks and Survey of Cloud Security Measures in Cloud Storage Applications , 2015 .

[119]  Supriya Garule,et al.  Outliers Detection using Subspace Method: A Survey , 2015 .

[120]  Gabriel Maciá-Fernández,et al.  Anomaly-based network intrusion detection: Techniques, systems and challenges , 2009, Comput. Secur..

[121]  Ali S. Hadi,et al.  Pair-wise association measures for categorical and mixed data , 2016, Inf. Sci..

[122]  Li Wei,et al.  HOT: Hypergraph-Based Outlier Test for Categorical Data , 2003, PAKDD.

[123]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[124]  Naiwen Ye,et al.  Robustness of Canberra Metric in Computer Intrusion Detection W , 2001 .

[125]  David A. Clifton,et al.  A review of novelty detection , 2014, Signal Process..

[126]  Md. Rafiqul Islam,et al.  A survey of anomaly detection techniques in financial domain , 2016, Future Gener. Comput. Syst..

[127]  Jeff G. Schneider,et al.  Detecting anomalous records in categorical datasets , 2007, KDD '07.

[128]  Jiye Liang,et al.  A simple and effective outlier detection algorithm for categorical data , 2014, Int. J. Mach. Learn. Cybern..

[129]  Nur Izura Udzir,et al.  Anomaly-based intrusion detection through K-means clustering and naives bayes classification , 2013 .

[130]  Andrew W. Moore,et al.  Optimal Reinsertion: A New Search Operator for Accelerated and More Accurate Bayesian Network Structure Learning , 2003, ICML.

[131]  Charu C. Aggarwal,et al.  Outlier Detection for Temporal Data: A Survey , 2014, IEEE Transactions on Knowledge and Data Engineering.

[132]  André Carlos Ponce de Leon Ferreira de Carvalho,et al.  Novelty detection in data streams , 2015, Artificial Intelligence Review.

[133]  Ritika,et al.  Outlier Detection in WSN- A Survey , 2013 .

[134]  Nirvana Meratnia,et al.  Outlier Detection Techniques for Wireless Sensor Networks: A Survey , 2008, IEEE Communications Surveys & Tutorials.

[135]  Katrien van Driessen,et al.  A Fast Algorithm for the Minimum Covariance Determinant Estimator , 1999, Technometrics.

[136]  Zengyou He,et al.  An Optimization Model for Outlier Detection in Categorical Data , 2005, ICIC.

[137]  Xing Xie,et al.  Discovering spatio-temporal causal interactions in traffic data streams , 2011, KDD.

[138]  Christos Faloutsos,et al.  oddball: Spotting Anomalies in Weighted Graphs , 2010, PAKDD.

[139]  M. Narasimha Murty,et al.  An algorithm for mining outliers in categorical data through ranking , 2012, 2012 12th International Conference on Hybrid Intelligent Systems (HIS).

[140]  Nitesh Gupta,et al.  To Detect Outlier for Categorical Data Streaming , 2015 .

[141]  Francesca Ieva,et al.  Detecting and visualizing outliers in provider profiling via funnel plots and mixed effect models , 2014, Health Care Management Science.

[142]  J. Simonoff,et al.  Procedures for the Identification of Multiple Outliers in Linear Models , 1993 .

[143]  Reda Alhajj,et al.  A comprehensive survey of numeric and symbolic outlier mining techniques , 2006, Intell. Data Anal..

[144]  VARUN CHANDOLA,et al.  Anomaly detection: A survey , 2009, CSUR.

[145]  David Ebdon,et al.  Statistics in geography: A practical approach , 1977 .

[146]  Ramakrishnan Srikant,et al.  Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.

[147]  Zengyou He,et al.  A Fast Greedy Algorithm for Outlier Mining , 2005, PAKDD.

[148]  Yagnik Ankur,et al.  Oulier Analysis Using Frequent Pattern Mining – A Review , 2013 .

[149]  A. Hadi Identifying Multiple Outliers in Multivariate Data , 1992 .

[150]  Harsh Sadawarti,et al.  Comparative Analysis of Outlier Detection Techniques , 2014 .

[151]  Raj Bhatnagar,et al.  CBOF: Cohesiveness-Based Outlier Factor A Novel Definition of Outlier-ness , 2014, MLDM.

[152]  Ali S. Hadi,et al.  A new measure of overall potential influence in linear regression , 1992 .

[153]  Sameer Singh,et al.  Novelty detection: a review - part 1: statistical approaches , 2003, Signal Process..

[154]  Hans-Peter Kriegel,et al.  A survey on unsupervised outlier detection in high‐dimensional numerical data , 2012, Stat. Anal. Data Min..

[155]  Michael Greenacre,et al.  Multiple Correspondence Analysis for the Quantification and Visualization of Large Categorical Data Sets , 2012 .

[156]  Ali Hamzeh,et al.  Anomaly Detection in Categorical Datasets Using Bayesian Networks , 2011, AICI.

[157]  Samar Sen Sarma,et al.  A Survey on Different Graph Based Anomaly Detection Techniques , 2015 .

[158]  Jiye Liang,et al.  A new method for measuring uncertainty and fuzziness in rough set theory , 2002, Int. J. Gen. Syst..

[159]  G. Grimmett,et al.  Probability and random processes , 2002 .

[160]  Muhammad Ali Imran,et al.  Anomaly Detection in Wireless Sensor Networks in a Non-Stationary Environment , 2014, IEEE Communications Surveys & Tutorials.

[161]  Hans-Peter Kriegel,et al.  LOF: identifying density-based local outliers , 2000, SIGMOD '00.

[162]  Brett J. Borghetti,et al.  A Survey of Distance and Similarity Measures Used Within Network Intrusion Anomaly Detection , 2015, IEEE Communications Surveys & Tutorials.

[163]  Brett J. Borghetti,et al.  A Review of Anomaly Detection in Automated Surveillance , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[164]  Donald E. Brown,et al.  An Outlier-based Data Association Method for Linking Criminal Incidents , 2003, SDM.

[165]  A. Agresti,et al.  Categorical Data Analysis , 1991, International Encyclopedia of Statistical Science.

[166]  Ravneet Kaur,et al.  A survey of data mining and social network analysis based anomaly detection techniques , 2016 .

[167]  Petra Perner,et al.  Machine Learning and Data Mining in Pattern Recognition , 2009, Lecture Notes in Computer Science.

[168]  B. Minaei-Bidgoli,et al.  Using Data Mining to Detect Health Care Fraud and Abuse: A Review of Literature , 2014, Global journal of health science.

[169]  A. Agresti Analysis of Ordinal Categorical Data: Agresti/Analysis , 2010 .

[170]  Yibo Wang,et al.  Leveraging deep learning with LDA-based text analytics to detect automobile insurance fraud , 2018, Decis. Support Syst..

[171]  Shuchita Upadhyaya,et al.  Outlier Detection: Applications And Techniques , 2012 .

[172]  Mei-Ling Shyu,et al.  Handling nominal features in anomaly intrusion detection problems , 2005, 15th International Workshop on Research Issues in Data Engineering: Stream Data Mining and Applications (RIDE-SDMA'05).

[173]  Ammar Belatreche,et al.  An experimental evaluation of novelty detection methods , 2014, Neurocomputing.

[174]  Arthur Zimek,et al.  On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study , 2016, Data Mining and Knowledge Discovery.

[175]  P. Ajitha,et al.  A Survey on Outliers Detection in Distributed Data Mining for Big Data , 2015 .

[176]  Hadi Fanaee-T,et al.  Tensor-based anomaly detection: An interdisciplinary survey , 2016, Knowl. Based Syst..

[177]  Gregory F. Cooper,et al.  The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks , 1990, Artif. Intell..

[178]  Georgios C. Anagnostopoulos,et al.  Detecting Outliers in High-Dimensional Datasets with Mixed Attributes , 2008, DMIN.

[179]  Stephen D. Bay,et al.  Mining distance-based outliers in near linear time with randomization and a simple pruning rule , 2003, KDD '03.

[180]  Pabitra Mohan Khilar,et al.  Fault Diagnosis in Wireless Sensor Networks: A Survey , 2013, IEEE Communications Surveys & Tutorials.

[181]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[182]  Theresa Beaubouef,et al.  Rough Sets , 2019, Lecture Notes in Computer Science.

[183]  Kate Smith-Miles,et al.  Adaptive Spike Detection for Resilient Data Stream Mining , 2007, AusDM.

[184]  Sheau-Dong Lang,et al.  Mining Distance-Based Outliers from Categorical Data , 2007, Seventh IEEE International Conference on Data Mining Workshops (ICDMW 2007).

[185]  Andrew W. Moore,et al.  Cached Sufficient Statistics for Efficient Machine Learning with Large Datasets , 1998, J. Artif. Intell. Res..

[186]  M. Narasimha Murty,et al.  Detecting outliers in categorical data through rough clustering , 2016, Natural Computing.

[187]  Jung-Min Park,et al.  An overview of anomaly detection techniques: Existing solutions and latest technological trends , 2007, Comput. Networks.

[188]  K. T. Divya,et al.  SURVEY ON OUTLIER DETECTION TECHNIQUES USING CATEGORICAL DATA , 2017 .

[189]  Zarinah Mohd Kasirun,et al.  Anomaly detection in Online Social Networks using structure-based technique , 2013, 8th International Conference for Internet Technology and Secured Transactions (ICITST-2013).