Towards Lambda Calculus Order-Incompleteness

Abstract After Scott, mathematical models of the type-free lambda calculus are constructed by order theoretic methods and classified into semantics according to the nature of their representable functions. Selinger [48] asked if there is a lambda theory that is not induced by any non-trivially partially ordered model (order-incompleteness problem). In terms of Alexandroff topology (the strongest topology whose specialization order is the order of the considered model) the problem of order-incompleteness can be also characterized as follows: a lambda theory T is order-incomplete if, and only if, every partially ordered model of T is partitioned by the Alexandroff topology in an infinite number of connected components (= minimal upper and lower sets), each one containing exactly one element of the model. Towards an answer to the order-incompleteness problem, we give a topological proof of the following result: there exists a lambda theory whose partially ordered models are partitioned by the Alexandroff topology in an infinite number of connected components, each one containing at most one λ-term denotation. This result implies the incompleteness of every semantics of lambda calculus given in terms of partially ordered models whose Alexandroff topology has a finite number of connected components (e.g.the Alexandroff topology of the models of the continuous, stable and strongly stable semantics is connected).

[1]  Antonino Salibra,et al.  Lambda Abstraction Algebras: Representation Theorems , 1995, Theor. Comput. Sci..

[2]  E. Engeler Algebras and combinators , 1981 .

[3]  Antonino Salibra Nonmodularity Results for Lambda Calculus , 2001, Fundam. Informaticae.

[4]  Albert R. Meyer,et al.  What is a Model of the Lambda Calculus? , 1982, Inf. Control..

[5]  Antonino Salibra,et al.  A Finite Equational Axiomatization of the Functional Algebras for the Lambda Calculus , 1999, Inf. Comput..

[6]  Peter Selinger,et al.  Functionality, polymorphism, and concurrency: a mathematical investigation of programming paradigms , 1998 .

[7]  Jean-Yves Girard,et al.  The System F of Variable Types, Fifteen Years Later , 1986, Theor. Comput. Sci..

[8]  H. Peter Gumm Topological implications inn-permutable varieties , 1984 .

[9]  J. P. Coleman Topological equivalents to n-permutability , 1997 .

[10]  Furio Honsell,et al.  An Approximation Theorem for Topological Lambda Models and the Topological Incompleteness of Lambda Calculus , 1992, J. Comput. Syst. Sci..

[11]  Xavier Gouy Etude des théories équationelles et des propriétés algébriques des modèles stables du Lambda-calcul , 1995 .

[12]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[13]  C.-H. Luke Ong,et al.  Full Abstraction in the Lazy Lambda Calculus , 1993, Inf. Comput..

[14]  Antonio Bucciarelli,et al.  Sequentiality and strong stability , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[15]  Gérard Berry,et al.  Stable Models of Typed lambda-Calculi , 1978, ICALP.

[16]  R. McKenzie,et al.  Algebras, Lattices, Varieties , 1988 .

[17]  Ionel Bucur,et al.  Toposes, Algebraic Geometry and Logic , 1972 .

[18]  W. Taylor Varieties Obeying Homotopy Laws , 1977, Canadian Journal of Mathematics.

[19]  Antonino Salibra,et al.  A continuum of theories of lambda calculus without semantics , 2001, Proceedings 16th Annual IEEE Symposium on Logic in Computer Science.

[20]  Antonino Salibra On the algebraic models of lambda calculus , 2000, Theor. Comput. Sci..

[21]  G. Plotkin Set-theoretical and Other Elementary Models of the -calculus Part 1: a Set-theoretical Deenition of Applica- Tion 1 Introduction , 2007 .

[22]  Mariangiola Dezani-Ciancaglini,et al.  A filter lambda model and the completeness of type assignment , 1983, Journal of Symbolic Logic.

[23]  J. P. Coleman Separation in topological algebras , 1996 .

[24]  Olivier Bastonero,et al.  Strong Stability and the Incompleteness of Stable Models for lambda-Calculus , 1999, Ann. Pure Appl. Log..

[25]  Chantal Berline,et al.  From computation to foundations via functions and application: The -calculus and its webbed models , 2000, Theor. Comput. Sci..

[26]  Gordon D. Plotkin On a Question of H. Friedman , 1996, Inf. Comput..

[27]  Dana S. Scott,et al.  Some Ordered Sets in Computer Science , 1982 .

[28]  Lynn Arthur Steen,et al.  Counterexamples in Topology , 1970 .

[29]  Dana S. Scott,et al.  Data Types as Lattices , 1976, SIAM J. Comput..

[30]  Furio Honsell,et al.  Final Semantics for untyped lambda-calculus , 1995, TLCA.

[31]  George Gratzer,et al.  Universal Algebra , 1979 .

[32]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[33]  Gordon D. Plotkin,et al.  Set-Theoretical and Other Elementary Models of the lambda-Calculus , 1993, Theor. Comput. Sci..

[34]  Olivier Bastonero Modeles fortement stables du lambda-calcul et resultats d'incompletude , 1996 .

[35]  Antonino Salibra,et al.  Lambda Abstraction Algebras: Coordinatizing Models of Lambda Calculus , 1997, Fundam. Informaticae.

[36]  Thomas Ehrhard Hypercoherences: A Strongly Stable Model of Linear Logic , 1993, Math. Struct. Comput. Sci..

[37]  Samson Abramsky,et al.  Domain Theory in Logical Form , 1991, LICS.

[38]  Peter Selinger Order-incompleteness and finite lambda models , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[39]  J. Krivine Lambda-calcul : types et modèles , 1990 .

[40]  J. Heijenoort From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931 , 1967 .

[41]  Wolfram Bentz Topological implications in varieties , 1999 .

[42]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[43]  Carl A. Gunter,et al.  Semantic Domains , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[44]  Samson Abramsky Full Abstraction in the Lazy λ−calculus , 1993 .

[45]  Dana S. Scott,et al.  Lambda Calculus: Some Models, Some Philosophy , 1980 .

[46]  M. Schönfinkel Über die Bausteine der mathematischen Logik , 1924 .

[47]  Antonino Salibra,et al.  The abstract variable-binding calculus , 1995, Stud Logica.

[48]  Rainer Kerth On the construction of stable models of untyped lambda-calculus , 2001, Theor. Comput. Sci..

[49]  Walter Taylor,et al.  Varieties of topological algebras , 1977, Journal of the Australian Mathematical Society.