Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae

[1]  N. Ho,et al.  Genetically Engineered SaccharomycesYeast Capable of Effective Cofermentation of Glucose and Xylose , 1998, Applied and Environmental Microbiology.

[2]  B. Hahn-Hägerdal,et al.  Anaerobic Xylose Fermentation by Recombinant Saccharomyces cerevisiae Carrying XYL1, XYL2, andXKS1 in Mineral Medium Chemostat Cultures , 2000, Applied and Environmental Microbiology.

[3]  W. V. van Zyl,et al.  Deletion of the GRE3 Aldose Reductase Gene and Its Influence on Xylose Metabolism in Recombinant Strains of Saccharomyces cerevisiae Expressing thexylA and XKS1 Genes , 2001, Applied and Environmental Microbiology.

[4]  B. Hahn-Hägerdal,et al.  Endogenous NADPH‐dependent aldose reductase activity influences product formation during xylose consumption in recombinant Saccharomyces cerevisiae , 2004, Yeast.

[5]  B. Hahn-Hägerdal,et al.  The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001. , 2002, FEMS yeast research.

[6]  N. Alexander Acetone stimulation of ethanol production from d-xylose by Pachysolen tannophilus , 1986, Applied Microbiology and Biotechnology.

[7]  B. Hall,et al.  Expression of the Escherichia coli xylose isomerase gene in Saccharomyces cerevisiae , 1987, Applied and environmental microbiology.

[8]  A. Willems,et al.  Studies on the transformation of intact yeast cells by the LiAc/SS‐DNA/PEG procedure , 1995, Yeast.

[9]  B. Hahn-Hägerdal,et al.  The xylose reductase/xylitol dehydrogenase/xylulokinase ratio affects product formation in recombinant xylose-utilising Saccharomyces cerevisiae , 2001 .

[10]  Guido Zacchi,et al.  Ethanol from lignocellulosics: A review of the economy , 1996 .

[11]  M. Sedlák,et al.  Production of ethanol from cellulosic biomass hydrolysates using genetically engineered saccharomyces yeast capable of cofermenting glucose and xylose , 2004, Applied biochemistry and biotechnology.

[12]  B. Prior,et al.  Effect of hydrogen acceptors on D‐xylose fermentation by anaerobic culture of immobilized Pachysolen tannophilus cells , 1989, Biotechnology and bioengineering.

[13]  B. Hahn-Hägerdal,et al.  The Streptomyces rubiginosus xylose isomerase is misfolded when expressed in Saccharomyces cerevisiae , 2003 .

[14]  Henk,et al.  Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis. , 1985, The Biochemical journal.

[15]  P. M. Bruinenberg,et al.  NADH-linked aldose reductase: the key to anaerobic alcoholic fermentation of xylose by yeasts , 1984, Applied Microbiology and Biotechnology.

[16]  N. Ho,et al.  Cloning of yeast xylulokinase gene by complementation of E. coli and yeast mutations , 1989 .

[17]  B. Hahn-Hägerdal,et al.  Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase , 1996, Applied and environmental microbiology.

[18]  S. Ehrlich,et al.  Prolonged incubation in calcium chloride improves the competence of Escherichia coli cells. , 1979, Gene.

[19]  Jack T Pronk,et al.  High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? , 2003, FEMS yeast research.

[20]  Bärbel Hahn-Hägerdal,et al.  Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae. , 2002, Biotechnology and bioengineering.

[21]  B. Hahn-Hägerdal,et al.  Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation , 1997, Applied Microbiology and Biotechnology.

[22]  B. Dien,et al.  Fermentations with New Recombinant Organisms , 1999, Biotechnology progress.

[23]  M. Rizzi,et al.  Xylose fermentation by yeasts , 1988, Biotechnology Letters.

[24]  P. Kötter,et al.  Xylose fermentation by Saccharomyces cerevisiae , 1993, Applied Microbiology and Biotechnology.

[25]  C. Hollenberg,et al.  The fermentation of xylose —an analysis of the expression of Bacillus and Actinoplanes xylose isomerase genes in yeast , 1989, Applied Microbiology and Biotechnology.

[26]  B. Hartley,et al.  Molecular cloning, DNA structure and expression of the Escherichia coli D‐xylose isomerase. , 1984, The EMBO journal.

[27]  C. Bruschi,et al.  Selective fitness of four episomal shuttle-vectors carrying HIS3, LEU2, TRP1, and URA3 selectable markers in Saccharomyces cerevisiae. , 2002, Plasmid.

[28]  T. Jeffries,et al.  Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae , 2003, Applied biochemistry and biotechnology.

[29]  M. Penttilä,et al.  Engineering Redox Cofactor Regeneration for Improved Pentose Fermentation in Saccharomyces cerevisiae , 2003, Applied and Environmental Microbiology.

[30]  Cornelis P. Hollenberg,et al.  Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant , 1990, Current Genetics.

[31]  Akihiko Kondo,et al.  Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain , 2006, Applied Microbiology and Biotechnology.

[32]  B. Dale,et al.  Fermentation of corn fibre sugars by an engineered xylose utilizing Saccharomyces yeast strain , 1997 .

[33]  M. Galbe,et al.  Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. , 2006, Journal of biotechnology.

[34]  V. J. Cid,et al.  The YGR194c (XKS1) gene encodes the xylulokinase from the budding yeast Saccharomyces cerevisiae. , 1998, FEMS microbiology letters.

[35]  M. Galbe,et al.  Controlled fed-batch fermentations of dilute-acid hydrolysate in pilot development unit scale , 2004, Applied biochemistry and biotechnology.

[36]  I. S. Pretorius,et al.  Cloning and expression of the Clostridium thermosulfurogenes D-xylose isomerase gene (xyLA) in Saccharomyces cerevisiae , 1996, Biotechnology Letters.

[37]  Anneli Petersson,et al.  Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae , 2007 .

[38]  Oskar Bengtsson,et al.  The expression of a Pichia stipitis xylose reductase mutant with higher KM for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae , 2006, Biotechnology and bioengineering.

[39]  B. Hahn-Hägerdal,et al.  Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering , 2005, Yeast.

[40]  B. Hahn-Hägerdal,et al.  High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae , 2007, Applied Microbiology and Biotechnology.

[41]  K. Yamanaka Inhibition of D-xylose isomerase by pentitols and D-lyxose. , 1969, Archives of biochemistry and biophysics.

[42]  W. V. van Zyl,et al.  Metabolic engineering of Saccharomyces cerevisiae for xylose utilization. , 2001, Advances in biochemical engineering/biotechnology.

[43]  Jens Nielsen,et al.  Metabolic Engineering of Ammonium Assimilation in Xylose-Fermenting Saccharomyces cerevisiae Improves Ethanol Production , 2003, Applied and Environmental Microbiology.

[44]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[45]  M Penttilä,et al.  Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. , 2001, Metabolic engineering.

[46]  Z Zhang,et al.  Plasmid stability in recombinant Saccharomyces cerevisiae. , 1996, Biotechnology advances.

[47]  B. Prior,et al.  Purification and partial characterization of an aldo-keto reductase from Saccharomyces cerevisiae , 1995, Applied and environmental microbiology.

[48]  Johannes P. van Dijken,et al.  The role of redox balances in the anaerobic fermentation of xylose by yeasts , 1983, European journal of applied microbiology and biotechnology.

[49]  W. V. van Zyl,et al.  Role of cultivation media in the development of yeast strains for large scale industrial use , 2005, Microbial cell factories.

[50]  Z. Lewis Liu,et al.  Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors , 2006, Applied Microbiology and Biotechnology.

[51]  J. Hauf,et al.  Simultaneous genomic overexpression of seven glycolytic enzymes in the yeast Saccharomyces cerevisiae. , 2000, Enzyme and microbial technology.

[52]  B. Hahn-Hägerdal,et al.  Reduced Oxidative Pentose Phosphate Pathway Flux in Recombinant Xylose-Utilizing Saccharomyces cerevisiae Strains Improves the Ethanol Yield from Xylose , 2002, Applied and Environmental Microbiology.

[53]  W. V. van Zyl,et al.  Cold adaptation of xylose isomerase from Thermus thermophilus through random PCR mutagenesis. Gene cloning and protein characterization. , 2002, European journal of biochemistry.

[54]  W. V. van Zyl,et al.  Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054. , 2003, FEMS yeast research.

[55]  B. Hahn-Hägerdal,et al.  Cofactor Dependence in Furan Reduction by Saccharomyces cerevisiae in Fermentation of Acid-Hydrolyzed Lignocellulose , 2005, Applied and Environmental Microbiology.

[56]  L. Jönsson,et al.  Development of a Saccharomyces cerevisiae Strain with Enhanced Resistance to Phenolic Fermentation Inhibitors in Lignocellulose Hydrolysates by Heterologous Expression of Laccase , 2001, Applied and Environmental Microbiology.

[57]  B. Ahring,et al.  Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass , 2004, Applied Microbiology and Biotechnology.

[58]  W. Stemmer Rapid evolution of a protein in vitro by DNA shuffling , 1994, Nature.

[59]  M. Rizzi,et al.  Xylose fermentation by yeasts , 1988, Applied Microbiology and Biotechnology.

[60]  Jack T Pronk,et al.  Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. , 2005, FEMS yeast research.

[61]  A. Covarrubias,et al.  Response to different environmental stress conditions of industrial and laboratory Saccharomyces cerevisiae strains , 2004, Applied Microbiology and Biotechnology.

[62]  J. Pronk,et al.  Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. , 2004, FEMS yeast research.

[63]  J. Petrash,et al.  Aldo-keto reductases as modulators of stress response. , 2003, Chemico-biological interactions.

[64]  W. V. van Zyl,et al.  Molecular Analysis of a Saccharomyces cerevisiae Mutant with Improved Ability To Utilize Xylose Shows Enhanced Expression of Proteins Involved in Transport, Initial Xylose Metabolism, and the Pentose Phosphate Pathway , 2003, Applied and Environmental Microbiology.

[65]  U. Sauer,et al.  Fermentation performance of engineered and evolved xylose‐fermenting Saccharomyces cerevisiae strains , 2004, Biotechnology and bioengineering.

[66]  M. Galbe,et al.  Ethanol production from enzymatic hydrolysates of sugarcane bagasse using recombinant xylose-utilising Saccharomyces cerevisiae , 2002 .

[67]  Toshiomi Yoshida,et al.  Construction of xylose-assimilating Saccharomyces cerevisiae , 1993 .