The challenge of blending in large sky surveys

The increasing sensitivity of modern sky surveys allow ever fainter emissions of light to be detected, but it also increases the chances of noticeable overlap between multiple sources of light, a phenomenon called blending. The consequences of blending are expected to be among the leading systematic measurement uncertainties of future surveys, such as the Legacy Survey of Space and Time. This Perspective discusses two main approaches to addressing blending: attempting to separate individual sources and statistically correcting for the presence of blending at the population level. For both approaches, simultaneous access to data of multiple surveys will be critical to construct a joint data set that combines the strengths of each individual survey. Blending occurs when multiple sources of light occupy the same region of the sky. This Perspective discusses the problems arising from blending for astrophysical and cosmological studies, and introduces the two main strategies for solutions.

[1]  ANALYTICAL GALAXY PROFILES FOR PHOTOMETRIC AND LENSING ANALYSIS , 2010, 1007.3248.

[2]  R. Nichol,et al.  The Dark Energy Survey: more than dark energy - an overview , 2016, 1601.00329.

[3]  J. Sérsic,et al.  Influence of the atmospheric and instrumental dispersion on the brightness distribution in a galaxy , 1963 .

[4]  D. Calzetti The Dust Opacity of Star‐forming Galaxies , 2001, astro-ph/0109035.

[5]  D. Gerdes,et al.  Dark Energy Survey Year 1 results: the impact of galaxy neighbours on weak lensing cosmology with IM3SHAPE , 2017, 1708.01534.

[6]  P. Stetson DAOPHOT: A COMPUTER PROGRAM FOR CROWDED-FIELD STELLAR PHOTOMETRY , 1987 .

[7]  Erin S. Sheldon,et al.  Practical Weak-lensing Shear Measurement with Metacalibration , 2017, 1702.02601.

[8]  Michael Hirsch,et al.  Measurement and calibration of noise bias in weak lensing galaxy shape estimation , 2012, 1203.5049.

[9]  Song Huang,et al.  The Hyper Suprime-Cam Software Pipeline , 2017, 1705.06766.

[10]  S. Derriere,et al.  T-PHOT version 2.0: improved algorithms for background subtraction, local convolution, kernel registration, and new options , 2016, 1609.00146.

[11]  Jeffrey Regier,et al.  Variational Inference for Deblending Crowded Starfields , 2021, ArXiv.

[12]  Judith G. Cohen,et al.  Extragalactic science, cosmology, and Galactic archaeology with the Subaru Prime Focus Spectrograph , 2012, 1206.0737.

[13]  D. Finkbeiner,et al.  Inference of Unresolved Point Sources at High Galactic Latitudes Using Probabilistic Catalogs , 2016, 1607.04637.

[14]  Marc Huertas-Company,et al.  Photometry of high-redshift blended galaxies using deep learning , 2019, Monthly Notices of the Royal Astronomical Society.

[15]  Stefano Casertano,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3754.

[16]  M. Giavalisco,et al.  The COSMOS Survey: Hubble Space Telescope Advanced Camera for Surveys Observations and Data Processing , 2007 .

[17]  Hai Fu,et al.  OVERVIEW OF THE SDSS-IV MaNGA SURVEY: MAPPING NEARBY GALAXIES AT APACHE POINT OBSERVATORY , 2014, 1412.1482.

[18]  Paul Torrey,et al.  FIRE-2 simulations: physics versus numerics in galaxy formation , 2017, Monthly Notices of the Royal Astronomical Society.

[19]  Jason Rhodes,et al.  Scientific Synergy between LSST and Euclid , 2017, The Astrophysical Journal Supplement Series.

[20]  Peter Melchior,et al.  Filling the gaps: Gaussian mixture models from noisy, truncated or incomplete samples , 2016, Astron. Comput..

[21]  C. B. D'Andrea,et al.  The DES Science Verification weak lensing shear catalogues , 2015, Monthly Notices of the Royal Astronomical Society.

[22]  M. Jarvis,et al.  An Application of Multi-band Forced Photometry to One Square Degree of SERVS: Accurate Photometric Redshifts and Implications for Future Science , 2017, 1704.01582.

[23]  Yun Wang,et al.  Cosmological Synergies Enabled by Joint Analysis of Multi-probe data from WFIRST, Euclid, and LSST , 2019 .

[24]  L. Kewley,et al.  The SAMI Galaxy Survey: Instrument specification and target selection , 2014, 1407.7335.

[25]  Petri Vaisanen,et al.  Confusion limit resulting from galaxies: using the Infrared Array Camera on board SIRTF , 2001 .

[26]  D. Gerdes,et al.  Comparing Dark Energy Survey and HST–CLASH observations of the galaxy cluster RXC J2248.7−4431: implications for stellar mass versus dark matter , 2016, 1601.00589.

[27]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[28]  Eran O. Ofek,et al.  How to COAAD Images. I. Optimal Source Detection and Photometry of Point Sources Using Ensembles of Images , 2015, 1512.06872.

[29]  W. M. Wood-Vasey,et al.  THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.

[30]  A. K. Inoue,et al.  The Hyper Suprime-Cam SSP Survey: Overview and Survey Design , 2017, 1704.05858.

[31]  H. Hoekstra,et al.  Accounting for object detection bias in weak gravitational lensing studies , 2020, 2010.04178.

[32]  A. Leauthaud,et al.  Weak lensing shear calibration with simulations of the HSC survey , 2017, Monthly Notices of the Royal Astronomical Society.

[33]  D. Gerdes,et al.  Dark Energy Survey Y3 results: Blending shear and redshift biases in image simulations , 2020, Monthly Notices of the Royal Astronomical Society.

[34]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[35]  Joachim Stadel,et al.  PKDGRAV3: beyond trillion particle cosmological simulations for the next era of galaxy surveys , 2016, 1609.08621.

[36]  C. McBride,et al.  Synthetic galaxy images and spectra from the Illustris simulation , 2014, 1411.3717.

[37]  V. Narayanan,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample , 2002, astro-ph/0206225.

[38]  C. B. D'Andrea,et al.  No Galaxy Left Behind: Accurate Measurements with the Faintest Objects in the Dark Energy Survey , 2015, 1507.08336.

[39]  M. Postman,et al.  Crowded Field Galaxy Photometry: Precision Colors in the CLASH Clusters , 2017, 1709.01925.

[40]  Alexie Leauthaud,et al.  Illuminating Low Surface Brightness Galaxies with the Hyper Suprime-Cam Survey , 2017, 1709.04474.

[41]  B. Yanny,et al.  Dark Energy Survey Year 1 Results: The Photometric Data Set for Cosmology , 2017, 1708.01531.

[42]  Richard M. Feder,et al.  Multiband Probabilistic Cataloging: A Joint Fitting Approach to Point-source Detection and Deblending , 2019, The Astronomical Journal.

[43]  H. Hoekstra,et al.  Towards emulating cosmic shear data: revisiting the calibration of the shear measurements for the Kilo-Degree Survey , 2018, Astronomy & Astrophysics.

[44]  D. Gerdes,et al.  Dark Energy Survey Year 1 results: the effect of intracluster light on photometric redshifts for weak gravitational lensing , 2018, Monthly Notices of the Royal Astronomical Society.

[45]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[46]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[47]  Tucson,et al.  Dark Energy Survey Year 3 Results: Measuring the Survey Transfer Function with Balrog , 2022, The Astrophysical Journal Supplement Series.

[48]  Kaiming He,et al.  Mask R-CNN , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[49]  P. Schneider,et al.  A bias in cosmic shear from galaxy selection: results from ray-tracing simulations , 2010, 1010.0010.

[50]  Eduardo Serrano,et al.  LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.

[51]  High precision crowded field photometry , 1989 .

[52]  E. Sheldon,et al.  Metadetection: Mitigating Shear-dependent Object Detection Biases with Metacalibration , 2019, 1911.02505.

[53]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[54]  D. Gerdes,et al.  Dark Energy Survey Year 1 Results: Detection of Intracluster Light at Redshift ∼ 0.25 , 2018, The Astrophysical Journal.

[55]  S. Krughoff,et al.  The effective number density of galaxies for weak lensing measurements in the LSST project , 2013, 1305.0793.

[56]  Fred Moolekamp,et al.  Hybrid Physical-Deep Learning Model for Astronomical Inverse Problems , 2019, ArXiv.

[57]  Edward J. Wollack,et al.  LSST Observing Strategy White Paper: LSST Observations of WFIRST Deep Fields , 2018, 1812.00514.

[58]  S. Bamford,et al.  SDSS-IV MaNGA: bulge-disc decomposition of IFU data cubes (BUDDI) , 2016, 1611.00609.

[59]  Adam D. Myers,et al.  Overview of the DESI Legacy Imaging Surveys , 2018, The Astronomical Journal.

[60]  J. Brinchmann,et al.  Euclid preparation , 2019, Astronomy & Astrophysics.

[61]  Alexander S. Szalay,et al.  Sloan digital sky survey: Early data release , 2002 .

[62]  Fred Moolekamp,et al.  scarlet: Source separation in multi-band images by Constrained Matrix Factorization , 2018, Astron. Comput..

[63]  R. Ellis,et al.  COSMOS: Hubble Space Telescope Observations , 2006, astro-ph/0612306.

[64]  D. Kirkby,et al.  Effects of overlapping sources on cosmic shear estimation: Statistical sensitivity and pixel-noise bias , 2021, Journal of Cosmology and Astroparticle Physics.

[65]  Fred Moolekamp,et al.  Proximal Adam: Robust Adaptive Update Scheme for Constrained Optimization , 2019 .

[66]  Ryan Hausen,et al.  Morpheus: A Deep Learning Framework for the Pixel-level Analysis of Astronomical Image Data , 2019, The Astrophysical Journal Supplement Series.

[67]  David W. Hogg,et al.  Replacing Standard Galaxy Profiles with Mixtures of Gaussians , 2012, 1210.6563.

[68]  B. Póczos,et al.  Deep generative models for galaxy image simulations , 2020, Monthly Notices of the Royal Astronomical Society.

[69]  J. Anthony Tyson,et al.  THE ELLIPTICITY DISTRIBUTION OF AMBIGUOUSLY BLENDED OBJECTS , 2014, 1406.1506.

[70]  John E. Davis,et al.  Sloan Digital Sky Survey: Early Data Release , 2002 .

[71]  Joint survey processing: combined resampling and convolution for galaxy modelling and deblending , 2021, 2107.06984.

[72]  Rachel Mandelbaum,et al.  Metacalibration: Direct Self-Calibration of Biases in Shear Measurement , 2017, 1702.02600.

[73]  Joshua Yao-Yu Lin,et al.  Deblending and classifying astronomical sources with Mask R-CNN deep learning , 2019, Monthly Notices of the Royal Astronomical Society.

[74]  A. D. Feinstein,et al.  HFF-DeepSpace Photometric Catalogs of the 12 Hubble Frontier Fields, Clusters, and Parallels: Photometry, Photometric Redshifts, and Stellar Masses , 2018, 1801.09734.

[76]  A. Heavens,et al.  Bayesian photometric redshifts of blended sources , 2018, Monthly Notices of the Royal Astronomical Society.

[77]  Satoshi Miyazaki,et al.  Characterization and Photometric Performance of the Hyper Suprime-Cam Software Pipeline , 2017, 1705.01599.

[78]  Nan Li,et al.  CosmoDC2: A Synthetic Sky Catalog for Dark Energy Science with LSST , 2019, The Astrophysical Journal Supplement Series.

[79]  Henk Hoekstra,et al.  A study of the sensitivity of shape measurements to the input parameters of weak-lensing image simulations , 2016, 1609.03281.

[80]  J. Starck,et al.  Multi-band morpho-Spectral Component Analysis Deblending Tool (MuSCADeT): Deblending colourful objects , 2016, 1603.00473.

[81]  P. Paatero,et al.  Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values† , 1994 .