Simplified Interval Type-2 Fuzzy Logic Systems

Type reduction (TR) followed by defuzzification is commonly used in interval type-2 fuzzy logic systems (IT2 FLSs). Because of the iterative nature of TR, it may be a computational bottleneck for the real-time applications of an IT2 FLS. This has led to many direct approaches to defuzzification that bypass TR, the simplest of which is the Nie-Tan direct defuzzification method (NT method). This paper provides some theoretical analyses of the NT method that answer the question “Why is the NT method good to use?” This paper also provides a direct relationship between TR followed by defuzzification (using KM algorithms) and the NT method. It also provides an improved NT method. Numerical examples illustrate our theoretical results and suggest that the NT method is a very good way to simplify an interval type-2 fuzzy set.

[1]  John T. Rickard,et al.  Type-2 Fuzzy Sets as Functions on Spaces , 2010, IEEE Transactions on Fuzzy Systems.

[2]  Jerry M. Mendel,et al.  Type-2 Fuzzistics for Symmetric Interval Type-2 Fuzzy Sets: Part 1, Forward Problems , 2006, IEEE Transactions on Fuzzy Systems.

[3]  Jerry M. Mendel,et al.  Perceptual Reasoning for Perceptual Computing: A Similarity-Based Approach , 2009, IEEE Transactions on Fuzzy Systems.

[4]  Jerry M. Mendel,et al.  Design of Novel Interval Type-2 Fuzzy Controllers for Modular and Reconfigurable Robots: Theory and Experiments , 2011, IEEE Transactions on Industrial Electronics.

[5]  Dongrui Wu,et al.  Computationally Efficient Type-Reduction Strategies for a Type-2 Fuzzy Logic Controller , 2005, The 14th IEEE International Conference on Fuzzy Systems, 2005. FUZZ '05..

[6]  Jerry M. Mendel,et al.  Uncertainty measures for interval type-2 fuzzy sets , 2007, Inf. Sci..

[7]  Jerry M. Mendel,et al.  On the Stability of Interval Type-2 TSK Fuzzy Logic Control Systems , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[8]  Hani Hagras,et al.  Toward General Type-2 Fuzzy Logic Systems Based on zSlices , 2010, IEEE Transactions on Fuzzy Systems.

[9]  H. Hagras,et al.  Type-2 FLCs: A New Generation of Fuzzy Controllers , 2007, IEEE Computational Intelligence Magazine.

[10]  Jerry M. Mendel,et al.  On KM Algorithms for Solving Type-2 Fuzzy Set Problems , 2013, IEEE Transactions on Fuzzy Systems.

[11]  Jerry M. Mendel,et al.  Computing With Words for Hierarchical Decision Making Applied to Evaluating a Weapon System , 2010, IEEE Transactions on Fuzzy Systems.

[12]  Dongrui Wu,et al.  Approaches for Reducing the Computational Cost of Interval Type-2 Fuzzy Logic Systems: Overview and Comparisons , 2013, IEEE Transactions on Fuzzy Systems.

[13]  Abhishek K Gupta,et al.  Numerical Methods using MATLAB , 2014, Apress.

[14]  Jerry M. Mendel,et al.  Super-Exponential Convergence of the Karnik–Mendel Algorithms for Computing the Centroid of an Interval Type-2 Fuzzy Set , 2007, IEEE Transactions on Fuzzy Systems.

[15]  Jerry M. Mendel,et al.  Advances in type-2 fuzzy sets and systems , 2007, Inf. Sci..

[16]  Jerry M. Mendel,et al.  Computing the centroid of a general type-2 fuzzy set by means of the centroid-flow algorithm , 2011, IEEE Transactions on Fuzzy Systems.

[17]  Jerry M. Mendel,et al.  Centroid of a type-2 fuzzy set , 2001, Inf. Sci..

[18]  Jerry M. Mendel,et al.  New results about the centroid of an interval type-2 fuzzy set, including the centroid of a fuzzy granule , 2007, Inf. Sci..

[19]  J. Mendel Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions , 2001 .

[20]  Shie-Jue Lee,et al.  A Fast Method for Computing the Centroid of a Type-2 Fuzzy Set , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[21]  Feilong Liu,et al.  An efficient centroid type-reduction strategy for general type-2 fuzzy logic system , 2008, Inf. Sci..

[22]  J. Mendel,et al.  α-Plane Representation for Type-2 Fuzzy Sets: Theory and Applications , 2009 .

[23]  Jerry M. Mendel,et al.  Type-2 fuzzy sets made simple , 2002, IEEE Trans. Fuzzy Syst..

[24]  Jerry M. Mendel,et al.  New closed-form solutions for Karnik-Mendel algorithm+defuzzification of an interval type-2 fuzzy set , 2012, 2012 IEEE International Conference on Fuzzy Systems.

[25]  Jerry M. Mendel,et al.  Type-2 fuzzy logic systems , 1999, IEEE Trans. Fuzzy Syst..

[26]  Jerry M. Mendel,et al.  Enhanced Karnik--Mendel Algorithms , 2009, IEEE Transactions on Fuzzy Systems.

[27]  Jerry M. Mendel,et al.  Interval type-2 fuzzy logic systems , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[28]  Dongrui Wu An overview of alternative type-reduction approaches for reducing the computational cost of interval type-2 fuzzy logic controllers , 2012, 2012 IEEE International Conference on Fuzzy Systems.

[29]  Jerry M. Mendel,et al.  $\alpha$-Plane Representation for Type-2 Fuzzy Sets: Theory and Applications , 2009, IEEE Transactions on Fuzzy Systems.

[30]  Woei Wan Tan,et al.  Towards an efficient type-reduction method for interval type-2 fuzzy logic systems , 2008, 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence).

[31]  Jerry M. Mendel,et al.  Uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems , 2002, IEEE Trans. Fuzzy Syst..

[32]  Jerry M. Mendel,et al.  Type-2 fuzzy sets and systems: an overview , 2007, IEEE Computational Intelligence Magazine.

[33]  Hani Hagras,et al.  Embedded Type-2 FLC for Real-Time Speed Control of Marine and Traction Diesel Engines , 2005, The 14th IEEE International Conference on Fuzzy Systems, 2005. FUZZ '05..

[34]  Jerry M. Mendel,et al.  Enhanced Centroid-Flow Algorithm for Computing the Centroid of General Type-2 Fuzzy Sets , 2012, IEEE Transactions on Fuzzy Systems.

[35]  Jerry M. Mendel,et al.  Connect Karnik-Mendel Algorithms to Root-Finding for Computing the Centroid of an Interval Type-2 Fuzzy Set , 2011, IEEE Transactions on Fuzzy Systems.

[36]  Shie-Jue Lee,et al.  An Enhanced Type-Reduction Algorithm for Type-2 Fuzzy Sets , 2011, IEEE Transactions on Fuzzy Systems.

[37]  Robert Ivor John,et al.  The collapsing method of defuzzification for discretised interval type-2 fuzzy sets , 2009, Inf. Sci..

[38]  Hani Hagras,et al.  Using Uncertainty Bounds in the Design of an Embedded Real-Time Type-2 Neuro-Fuzzy Speed Controller for Marine Diesel Engines , 2006, 2006 IEEE International Conference on Fuzzy Systems.

[39]  Adam Niewiadomski,et al.  A Type-2 Fuzzy Approach to Linguistic Summarization of Data , 2008, IEEE Transactions on Fuzzy Systems.

[40]  Jerry M. Mendel,et al.  On the robustness of Type-1 and Interval Type-2 fuzzy logic systems in modeling , 2011, Inf. Sci..