Plasmon–emitter interaction using integrated ring grating–nanoantenna structures

Overcoming the diffraction limit to achieve high optical resolution is one of the main challenges in the fields of plasmonics, nanooptics and nanophotonics. In this work, we introduce novel plasmonic structures consisting of nanoantennas (nanoprisms, single bowtie nanoantennas and double bowtie nanoantennas) integrated in the center of ring diffraction gratings. Propagating surface plasmon polaritons (SPPs) are generated by the ring grating and coupled with localized surface plasmons (LSPs) at the nanoantennas exciting emitters placed in their gap. SPPs are widely used for optical waveguiding but provide low resolution due to their weak spatial confinement. In contrast, LSPs provide excellent sub-wavelength confinement but induce large losses. The phenomenon of SPP-LSP coupling witnessed in our structures allows for achieving more precise focusing at the nanoscale, causing an increase in the fluorescence emission of the emitters. Finite-difference time-domain simulations as well as experimental fabrication and optical characterization results are presented to study plasmon-emitter coupling between an ensemble of dye molecules and our integrated plasmonic structures. A comparison is given to highlight the importance of each structure on the photoluminescence and radiative decay enhancement of the molecules.

[1]  J. Wenger Fluorescence enhancement factors on optical antennas: enlarging the experimental values without changing the antenna design , 2011, 1109.5048.

[2]  M. Käll,et al.  Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. , 2007, Nano letters.

[3]  S. Huant,et al.  “Deterministic” quantum plasmonics. , 2010, Nano letters.

[4]  Jeremy J. Baumberg,et al.  Single-molecule strong coupling at room temperature in plasmonic nanocavities , 2016, Nature.

[5]  V. Sandoghdar,et al.  Metallodielectric hybrid antennas for ultrastrong enhancement of spontaneous emission. , 2012, Physical review letters.

[6]  A. Dereux,et al.  Efficient unidirectional nanoslit couplers for surface plasmons , 2007, cond-mat/0703407.

[7]  Michael J Sailor,et al.  Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. , 2009, Cancer research.

[8]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[9]  Lukas Novotny Nano-optics: Optical antennas tuned to pitch , 2008, Nature.

[10]  Aurélien Drezet,et al.  A perfect plasmonic quarter-wave plate , 2012 .

[11]  O. Ersoy,et al.  Improving near-field confinement of a bowtie aperture using surface plasmon polaritons , 2011 .

[12]  D. Pile,et al.  Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface , 2004 .

[13]  Yuan Wang,et al.  Resonant and non-resonant generation and focusing of surface plasmons with circular gratings. , 2006, Optics express.

[14]  F. Keilmann,et al.  Near-field microscopy by elastic light scattering from a tip , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[15]  Tian Yang,et al.  Optical antennas integrated with concentric ring gratings: electric field enhancement and directional radiation. , 2011, Optics express.

[16]  Reuven Gordon,et al.  Directivity enhanced Raman spectroscopy using nanoantennas. , 2011, Nano letters.

[17]  Harry A. Atwater,et al.  Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides , 2003, Nature materials.

[18]  Joel K. W. Yang,et al.  Electrically-Excited Surface Plasmon Polaritons with Directionality Control , 2015 .

[19]  T. Ebbesen,et al.  Miniature plasmonic wave plates. , 2008, Physical review letters.

[20]  Christophe Couteau,et al.  A Concentric Plasmonic Platform for the Efficient Excitation of Surface Plasmon Polaritons , 2016, Plasmonics.

[21]  T. Ebbesen,et al.  Plasmonic antennas for directional sorting of fluorescence emission. , 2011, Nano letters.

[22]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[23]  Philippe Lalanne,et al.  Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons. , 2011, Nano letters.

[24]  A. Hohenau,et al.  Silver nanowires as surface plasmon resonators. , 2005, Physical review letters.

[25]  Wayne Dickson,et al.  Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies. , 2007, Nano letters.

[26]  S. Fan,et al.  Dislocated double-layer metal gratings: an efficient unidirectional coupler. , 2014, Nano letters.

[27]  Xue-Wen Chen,et al.  Highly efficient interfacing of guided plasmons and photons in nanowires. , 2009, Nano letters.

[28]  Xianfan Xu,et al.  Complementary bowtie aperture for localizing and enhancing optical magnetic field. , 2011, Optics letters.

[29]  P. Berini Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures , 2000 .

[30]  Harald Ditlbacher,et al.  Dielectric stripes on gold as surface plasmon waveguides , 2006 .

[31]  R. Bachelot,et al.  Integrated plasmonic double bowtie / ring grating structure for enhanced electric field confinement , 2015 .

[32]  P. Srisungsitthisunti,et al.  Extraordinary transmission from high-gain nanoaperture antennas , 2010 .

[33]  Lukas Novotny,et al.  Principles of Nano-Optics by Lukas Novotny , 2006 .

[34]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[35]  P. Lalanne,et al.  Surface Plasmon Generation by Subwavelength Isolated Objects , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[36]  Qihuang Gong,et al.  A hybrid nanoantenna for highly enhanced directional spontaneous emission , 2014 .

[37]  Mario Agio,et al.  Optical antennas as nanoscale resonators. , 2011, Nanoscale.