Fulgimides as Light-Activated Tools in Biological Investigations

With high spatiotemporal control, the conformation, rigidity and electronics of photoresponsive bioactive molecules can be altered. This, in turn, allows for control over the biological properties of these molecules. Incorporation of a photoswitchable moiety into a number of reported inhibitors, ligands and modulators has demonstrated the ability to modulate enzyme, receptor and ion channel responses using light. To date, the major classes of photoswitches explored in biological applications have been the azobenzenes and diarylethenes. Even though the use of these photoswitches has established the value of photoresponsive molecules as biological tools, several limitations have become apparent. Fulgimides represent a promising class of photoswitches that are not widely used for such biological purposes. Their properties are similar to that of diarylethenes, as their photochromism is based on a 6π‐electrocyclic rearrangement, however, fulgimides have the added advantage of thermal stability for both isomers. Fulgimides exhibit high photostationary states and fatigue resistance, with the ability to switch in aqueous buffer solutions. In this minireview, these advantageous photophysical properties will be discussed, as well as the use of fulgimides in biological investigations.

[1]  M. Keller,et al.  Photochromic peptidic NPY Y4 receptor ligands. , 2019, Organic & biomolecular chemistry.

[2]  Jared D. Harris,et al.  New molecular switch architectures , 2018, Proceedings of the National Academy of Sciences.

[3]  Dirk Trauner,et al.  In Vivo Photopharmacology. , 2018, Chemical reviews.

[4]  R. Kramer,et al.  Design of a Highly Bistable Photoswitchable Tethered Ligand for Rapid and Sustained Manipulation of Neurotransmission. , 2018, Journal of the American Chemical Society.

[5]  E. Isacoff,et al.  Restoring Vision to the Blind with Chemical Photoswitches. , 2018, Chemical reviews.

[6]  M. Jung,et al.  Photochromic Indolyl Fulgimides as Chromo-pharmacophores Targeting Sirtuins. , 2018, The Journal of organic chemistry.

[7]  B. Feringa,et al.  The (photo)chemistry of Stenhouse photoswitches: guiding principles and system design. , 2018, Chemical Society reviews.

[8]  P. Gmeiner,et al.  Photochromic Dopamine Receptor Ligands Based on Dithienylethenes and Fulgides. , 2017, Chemistry.

[9]  A. Heckel,et al.  Pyridine-Spiropyran Derivative as a Persistent, Reversible Photoacid in Water. , 2017, The Journal of organic chemistry.

[10]  W. Sippl,et al.  Photochromic histone deacetylase inhibitors based on dithienylethenes and fulgimides. , 2017, Organic & biomolecular chemistry.

[11]  C. Hawker,et al.  Tunable Visible and Near Infrared Photoswitches. , 2016, Journal of the American Chemical Society.

[12]  Michael Lerch,et al.  Neue Ziele für die Photopharmakologie , 2016 .

[13]  Gooitzen M van Dam,et al.  Emerging Targets in Photopharmacology. , 2016, Angewandte Chemie.

[14]  T. Cordes,et al.  Light-Switchable Peptides with a Hemithioindigo Unit: Peptide Design, Photochromism, and Optical Spectroscopy. , 2016, Chemphyschem : a European journal of chemical physics and physical chemistry.

[15]  S. Hecht,et al.  Aktivierung molekularer Schalter mit sichtbarem Licht , 2015 .

[16]  S. Hecht,et al.  Visible-Light-Activated Molecular Switches. , 2015, Angewandte Chemie.

[17]  S. Hecht,et al.  Improving the fatigue resistance of diarylethene switches. , 2015, Journal of the American Chemical Society.

[18]  B. König,et al.  Functionalization of photochromic dithienylmaleimides , 2015 .

[19]  V. P. Rybalkin,et al.  Synthesis and photochromic properties of fulgides and fulgimides, 5-alkoxybenzo[b]furan derivatives , 2014, Russian Chemical Bulletin.

[20]  R. Al‐Kaysi,et al.  Organic photomechanical materials. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[21]  Patrick Löffler,et al.  Nutzung natürlicher Proteinsymmetrie zum Design lichtschaltbarer Enzyminhibitoren , 2014 .

[22]  R. Merkl,et al.  Exploiting protein symmetry to design light-controllable enzyme inhibitors. , 2014, Angewandte Chemie.

[23]  Rafal Klajn,et al.  Spiropyran-based dynamic materials. , 2014, Chemical Society reviews.

[24]  J. Andréasson,et al.  Characterization of the Thermal and Photoinduced Reactions of Photochromic Spiropyrans in Aqueous Solution , 2013, The journal of physical chemistry. B.

[25]  John M. Beierle,et al.  Reversible photocontrol of biological systems by the incorporation of molecular photoswitches. , 2013, Chemical reviews.

[26]  Krzysztof K. Krawczyk,et al.  Efficient BOP-mediated synthesis of fulgimides , 2012 .

[27]  Uwe Pischel,et al.  An All-Photonic Molecule-Based D Flip-Flop , 2011, Journal of the American Chemical Society.

[28]  V. Minkin Photoswitchable Molecular Systems Based on Spiropyrans and Spirooxazines , 2011 .

[29]  S. Rath,et al.  Functionalized Fulgides and Fluorophore-Photoswitch Conjugates , 2011 .

[30]  F. Sönnichsen,et al.  Photochromism of Rotation‐Hindered Furylfulgides Influenced by Steric Modifications , 2011 .

[31]  J. Mattay,et al.  Tuning of switching properties and excited-state dynamics of fulgides by structural modifications. , 2011, Physical chemistry chemical physics : PCCP.

[32]  B. V. Nabatov,et al.  Synthesis and photochromism of functionalized benzothiophene-based fulgides and fulgimides , 2010 .

[33]  W. Lees,et al.  Synthesis and optical properties of aqueous soluble indolylfulgimides. , 2009, The Journal of organic chemistry.

[34]  Ersin Orhan,et al.  Studies on photochromic benzimidazol[1,2a]pyrrolidin-2-ones from the condensation of 2-methyl-3-benzothienylethylidene-(isopropylidene)succinic anhydride with 1,2-diaminobenzenes , 2006 .

[35]  Thomas Hennig,et al.  Photomodulation of ionic current through hemithioindigo-modified gramicidin channels. , 2004, Organic & biomolecular chemistry.

[36]  M. Berns,et al.  A polarity dependent fluorescence "switch" in live cells. , 2004, Journal of photochemistry and photobiology. B, Biology.

[37]  K. Akiyoshi,et al.  Photoresponsive nanogels formed by the self-assembly of spiropyrane-bearing pullulan that act as artificial molecular chaperones. , 2004, Biomacromolecules.

[38]  K. Rück-Braun,et al.  Syntheses and UV/Vis Properties of Amino‐Functionalized Fulgimides , 2003 .

[39]  A. Dvornikov,et al.  New near infrared-sensitive photochromic fluorescing molecules , 2003 .

[40]  R. Birge,et al.  Improved synthesis of indolyl fulgides. , 2001, The Journal of organic chemistry.

[41]  Masahiro Irie,et al.  Diarylethenes for Memories and Switches. , 2000, Chemical reviews.

[42]  康一 松下,et al.  カチオン性パラジウム錯体を用いた2-ブチン-1, 4-ジオール類のカルボニル化によるフルギド類の合成 , 1998 .

[43]  H. C. Wolf,et al.  Photochromic fulgides: towards their application in molecular electronics , 1997 .

[44]  Y. Yokoyama,et al.  Role of the Methoxy Substituents on the Photochromic Indolylfulgides. Absorption Maximum vs. Molar Absorption Coefficient of the Colored Form , 1996 .

[45]  S. Uchida,et al.  Electronic Effects of Substituents on Indole Nitrogen on the Photochromic Properties of Indolylfulgides , 1995 .

[46]  S. Kubota,et al.  Synthesis and Photochromic Properties of Fulgides with a t-Butyl Substituent on the Furyl- or Thienylmethylidene Moiety , 1995 .

[47]  I. Willner,et al.  PHOTOREGULATION OF α‐CHYMOTRYPSIN ACTIVITY IN ORGANIC MEDIA: EFFECTS OF BIOIMPRINTING , 1994 .

[48]  L. Yu,et al.  Absorption spectra and photoisomerization kinetics of photochromic pyrryl fulgides , 1992 .

[49]  S. Balasubramanian,et al.  Reaction of (6R)-6-fluoroEPSP with recombinant Escherichia coli chorismate synthase generates a stable flavin mononucleotide semiquinone radical , 1992 .

[50]  Tatsuo Tanaka,et al.  Synthesis and Photochromic Behavior of 5-Substituted Indolylfulgides , 1991 .

[51]  F. Effenberger,et al.  Photochromic thiophenefulgides : photokinetics of two isopropyl derivatives , 1991 .

[52]  H. G. Heller,et al.  Photochromic heterocyclic fulgides. Part 5. Rearrangement reactions of (E)-α-1,2,5-trimethyl-3-pyrrylethylidene(isopropylidene)succinic anhydride end related compounds , 1991 .

[53]  H. G. Heller,et al.  Photochromic heterocyclic fulgides. Part 2. Electrocyclic reactions of (E)-α-2,5-dimethyl-3-furylethylidene(alkyl-substituted methylene)succinic anhydrides , 1981 .

[54]  S. N. Oliver,et al.  Overcrowded molecules. Part 16. Thermal and photochemical reactions of (E,E)-bis(benzylidene)succinic anhydride , 1979 .