Hybridizable discontinuous Galerkin p‐adaptivity for wave propagation problems

A p-adaptive hybridizable discontinuous Galerkin method for the solution of wave problems is presented in a challenging engineering problem. Moreover, its performance is compared with a high-order continuous Galerkin. The hybridization technique allows to reduce the coupled degrees of freedom to only those on the mesh element boundaries, whereas the particular choice of the numerical fluxes opens the path to a superconvergent postprocessed solution. This superconvergent postprocessed solution is used to construct a simple and inexpensive error estimator. The error estimator is employed to obtain solutions with the prescribed accuracy in the area (or areas) of interest and also drives a proposed iterative mesh adaptation procedure. The proposed method is applied to a nonhomogeneous scattering problem in an unbounded domain. This is a challenging problem because, on the one hand, for high frequencies, numerical difficulties are an important issue because of the loss of the ellipticity and the oscillatory behavior of the solution. And on the other hand, it is applied to real harbor agitation problems. That is, the mild slope equation in frequency domain (Helmholtz equation with nonconstant coefficients) is solved on real geometries with the corresponding perfectly matched layer to damp the diffracted waves. The performance of the method is studied on two practical examples. The adaptive hybridizable discontinuous Galerkin method exhibits better efficiency compared with a high-order continuous Galerkin method using static condensation of the interior nodes.

[1]  Antonio Huerta,et al.  The computation of bounds for linear-functional outputs of weak solutions to the two-dimensional elasticity equations , 2006 .

[2]  Pedro Díez,et al.  Error estimation including pollution assessment for nonlinear finite element analysis , 2000 .

[3]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[4]  Antonio Huerta,et al.  Are High-order and Hybridizable Discontinuous Galerkin methods competitive ? , 2012 .

[5]  A. Huerta,et al.  Hybridizable discontinuous Galerkin p-adaptivity for wave problems , 2012 .

[6]  Efficiency and accuracy of high-order computations and reduced order modelling in coastal engineering wave propagation problems , 2012 .

[7]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[8]  Bubble‐based stabilization for the Helmholtz equation , 2007 .

[9]  M. Shephard,et al.  A straightforward structure to construct shape functions for variable p-order meshes , 1997 .

[10]  Robert Michael Kirby,et al.  To CG or to HDG: A Comparative Study , 2012, J. Sci. Comput..

[11]  Claes Eskilsson,et al.  An hp‐adaptive discontinuous Galerkin method for shallow water flows , 2011 .

[12]  A. Huerta,et al.  A unified approach to remeshing strategies for finite element h-adaptivity , 1999 .

[13]  Robert Michael Kirby,et al.  From h to p efficiently: Implementing finite and spectral/hp element methods to achieve optimal performance for low- and high-order discretisations , 2010, J. Comput. Phys..

[14]  Antonio Huerta,et al.  Discontinuous Galerkin methods for the Stokes equations using divergence‐free approximations , 2008 .

[15]  R C MacCamy,et al.  Wave forces on piles: a diffraction theory , 1954 .

[16]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[17]  K. Anastasiou,et al.  Efficient elliptic solvers for the mild-slope equation using the multigrid technique , 1992 .

[18]  Pedro Díez,et al.  Subdomain-based flux-free a posteriori error estimators , 2006 .

[19]  Xevi Roca,et al.  Defining Quality Measures for High-Order Planar Triangles and Curved Mesh Generation , 2011, IMR.

[20]  P. Pinsky,et al.  Complex wavenumber Fourier analysis of the p-version finite element method , 1994 .

[21]  Jean-François Remacle,et al.  An Adaptive Discontinuous Galerkin Technique with an Orthogonal Basis Applied to Compressible Flow Problems , 2003, SIAM Rev..

[22]  Kyungsoo Kim,et al.  Mortar method for nonconforming finite elements , 2005, Appl. Math. Comput..

[23]  Haiying Wang,et al.  Superconvergent discontinuous Galerkin methods for second-order elliptic problems , 2009, Math. Comput..

[24]  O. C. Zienkiewicz,et al.  The Finite Element Method for Fluid Dynamics , 2005 .

[25]  Pedro Díez,et al.  Exact Bounds for Linear Outputs of the Advection-Diffusion-Reaction Equation Using Flux-Free Error Estimates , 2009, SIAM J. Sci. Comput..

[26]  H. S. Chen,et al.  Effects of bottom friction and boundary absorption on water wave scattering , 1986 .

[27]  T. Strouboulis,et al.  Partition of unity method for Helmholtz equation: q-convergence for plane-wave and wave-band local bases , 2006 .

[28]  Stefan A. Sauter,et al.  Is the Pollution Effect of the FEM Avoidable for the Helmholtz Equation Considering High Wave Numbers? , 1997, SIAM Rev..

[29]  Bo Dong,et al.  A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems , 2008, Math. Comput..

[30]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[31]  Pedro Díez,et al.  Equilibrated patch recovery error estimates: simple and accurate upper bounds of the error , 2007 .

[32]  Gwénaël Gabard,et al.  Discontinuous Galerkin methods with plane waves for time-harmonic problems , 2007, J. Comput. Phys..

[33]  Oubay Hassan,et al.  An analysis of the performance of a high-order stabilised finite element method for simulating compressible flows , 2013 .

[34]  A. Huerta,et al.  Bounds of functional outputs for parabolic problems. Part II: Bounds of the exact solution , 2008 .

[35]  J. Berkhoff,et al.  Computation of Combined Refraction — Diffraction , 1972 .

[36]  採編典藏組 Society for Industrial and Applied Mathematics(SIAM) , 2008 .

[37]  Thomas J. R. Hughes,et al.  Galerkin/least-squares finite element methods for the reduced wave equation with non-reflecting boundary conditions in unbounded domains , 1992 .

[38]  Shu-xue Liu,et al.  Self-adaptive FEM numerical modeling of the mild-slope equation , 2008 .

[39]  Per-Olof Persson,et al.  The Compact Discontinuous Galerkin (CDG) Method for Elliptic Problems , 2007, SIAM J. Sci. Comput..

[40]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[41]  Ge Wei,et al.  Solution of the mild-slope wave problem by iteration , 1991 .

[42]  Charbel Farhat,et al.  A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime , 2003 .

[43]  Haijun Wu,et al.  Discontinuous Galerkin Methods for the Helmholtz Equation with Large Wave Number , 2009, SIAM J. Numer. Anal..

[44]  N. Booij,et al.  A note on the accuracy of the mild-slope equation , 1983 .

[45]  G. Gabard,et al.  A comparison of wave‐based discontinuous Galerkin, ultra‐weak and least‐square methods for wave problems , 2011 .

[46]  P. Villon,et al.  An iterative defect‐correction type meshless method for acoustics , 2003 .

[47]  I. Singer,et al.  A perfectly matched layer for the Helmholtz equation in a semi-infinite strip , 2004 .

[48]  Josep Sarrate,et al.  Adaptive finite element strategies based on error assessment , 1999 .

[49]  Bernardo Cockburn,et al.  journal homepage: www.elsevier.com/locate/cma , 2022 .

[50]  Wei Chen,et al.  Simulation of wave breaking effects in two-dimensional elliptic harbor wave models , 2001 .

[51]  Bernardo Cockburn,et al.  An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations , 2009, Journal of Computational Physics.

[52]  Antonio Huerta,et al.  Computing Bounds for Linear Functionals of Exact Weak Solutions to Poisson's Equation , 2004, SIAM J. Numer. Anal..

[53]  O. Cessenat,et al.  Application of an Ultra Weak Variational Formulation of Elliptic PDEs to the Two-Dimensional Helmholtz Problem , 1998 .

[54]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[55]  J. Berkhoff,et al.  Mathematical models for simple harmonic linear water waves: Wave diffraction and refraction , 1976 .

[56]  Fernando A. Rochinha,et al.  A discontinuous finite element formulation for Helmholtz equation , 2006 .

[57]  I. Harari,et al.  Numerical investigations of stabilized finite element computations for acoustics , 2004 .

[58]  Spencer J. Sherwin,et al.  From h to p Efficiently: Selecting the Optimal Spectral/hp Discretisation in Three Dimensions , 2011 .

[59]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[60]  Pedro Díez,et al.  Adaptivity based on error estimation for viscoplastic softening materials , 2000 .

[61]  Asadollah Noorzad,et al.  A coupled boundary element-finite difference solution of the elliptic modified mild slope equation , 2011 .

[62]  C. L. Chang,et al.  A least-squares finite element method for the Helmholtz equation , 1990 .

[63]  Philippe R.B. Devloo,et al.  Systematic and generic construction of shape functions for p-adaptive meshes of multidimensional finite elements , 2009 .

[64]  O. C. Zienkiewicz,et al.  Diffraction and refraction of surface waves using finite and infinite elements , 1977 .

[65]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[66]  James R. Houston,et al.  Combined refraction and diffraction of short waves using the finite element method , 1981 .

[67]  Pierre Ladevèze,et al.  Mastering Calculations in Linear and Nonlinear Mechanics , 2004 .

[68]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..