Potential effects of anthropogenic noise on echolocation behavior in horseshoe bats
暂无分享,去创建一个
[1] Robert J Dooling,et al. The effect of altered auditory feedback on control of vocal production in budgerigars (Melopsittacus undulatus). , 2009, The Journal of the Acoustical Society of America.
[2] H. Schnitzler,et al. Die Ultraschall-Ortungslaute der Hufeisen-Fledermäuse (Chiroptera-Rhinolophidae) in verschiedenen Orientierungssituationen , 1968, Zeitschrift für vergleichende Physiologie.
[3] H. Schnitzler,et al. Auditory fovea and Doppler shift compensation: adaptations for flutter detection in echolocating bats using CF-FM signals , 2011, Journal of Comparative Physiology A.
[4] H. Brumm,et al. Bird song and anthropogenic noise: vocal constraints may explain why birds sing higher-frequency songs in cities , 2013, Proceedings of the Royal Society B: Biological Sciences.
[5] Joachim Ostwald,et al. Foraging bats avoid noise , 2008, Journal of Experimental Biology.
[6] J. A. Simmons,et al. Peripheral auditory tuning for fine frequency analysis by the CF-FM bat,Rhinolophus ferrumequinum , 2004, Journal of comparative physiology.
[7] H. Brumm. The impact of environmental noise on song amplitude in a territorial bird , 2004 .
[8] Joseph M. Szewczak,et al. Ultrasound emissions from wind turbines as a potential attractant to bats : a preliminary investigation , 2006 .
[9] G. Pollak,et al. Disproportionate frequency representation in the inferior colliculus of doppler-compensating Greater Horseshoe bats: Evidence for an acoustic fovea , 2004, Journal of comparative physiology.
[10] A. Horn,et al. Ambient noise and the design of begging signals , 2005, Proceedings of the Royal Society B: Biological Sciences.
[11] Thierry Aubin,et al. How do king penguins (Aptenodytes patagonicus apply the mathematical theory of information to communicate in windy conditions? , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[12] Sue Anne Zollinger,et al. On the evolution of noise-dependent vocal plasticity in birds , 2012, Biology Letters.
[13] O. Henson,et al. Ultrasonic vocalizations of flying bats monitored by radiotelemetry. , 1992, The Journal of experimental biology.
[14] Hiroshi Riquimaroux,et al. FM echolocating bats shift frequencies to avoid broadcast–echo ambiguity in clutter , 2010, Proceedings of the National Academy of Sciences.
[15] Jacob Cohen,et al. A power primer. , 1992, Psychological bulletin.
[16] L. M. Potash,et al. Noise-induced changes in calls of the Japanese quail , 1972 .
[17] D. Todt,et al. Acoustic communication in noise: regulation of call characteristics in a New World monkey , 2004, Journal of Experimental Biology.
[18] Jiang Feng,et al. Ambient noise induces independent shifts in call frequency and amplitude within the Lombard effect in echolocating bats , 2013, Proceedings of the National Academy of Sciences.
[19] Dietmar Todt,et al. Noise-dependent song amplitude regulation in a territorial songbird , 2002, Animal Behaviour.
[20] N. Suga,et al. Peripheral auditory tuning for fine frequency analysis by the CF-FM bat,Rhinolophus ferrumequinum , 2004, Journal of comparative physiology.
[21] R. Rübsamen,et al. Foraging behaviour and echolocation in the rufous horseshoe bat (Rhinolophus rouxi) of Sri Lanka , 2004, Behavioral Ecology and Sociobiology.
[22] Hansjoerg P. Kunc,et al. Experimentally increased noise levels change spatial and singing behaviour , 2013, Biology Letters.
[23] B. Siemers,et al. Hunting at the highway: traffic noise reduces foraging efficiency in acoustic predators , 2010, Proceedings of the Royal Society B: Biological Sciences.
[24] H. Slabbekoorn,et al. Cities Change the Songs of Birds , 2006, Current Biology.
[25] D B Moody,et al. Regulation of voice amplitude by the monkey. , 1975, The Journal of the Acoustical Society of America.
[26] N Suga,et al. Functional properties of auditory neurones in the cortex of echo‐locating bats. , 1965, The Journal of physiology.
[27] H. Slabbekoorn,et al. Fluid dynamics: Vortex rings in a constant electric field , 2003, Nature.
[28] H. Schnitzler,et al. Die Ultraschallortungslaute der Hufeisen-Fledermause (Chiroptera-Rhinolophidae) in vershiedenen Orientierungssituationen , 1968 .
[29] Kazuo Okanoya,et al. Context-dependent song amplitude control in Bengalese finches , 2003, Neuroreport.