Arrow of time and its reversal on the IBM quantum computer

Uncovering the origin of the “arrow of time” remains a fundamental scientific challenge. Within the framework of statistical physics, this problem was inextricably associated with the Second Law of Thermodynamics, which declares that entropy growth proceeds from the system’s entanglement with the environment. This poses a question of whether it is possible to develop protocols for circumventing the irreversibility of time and if so to practically implement these protocols. Here we show that, while in nature the complex conjugation needed for time reversal may appear exponentially improbable, one can design a quantum algorithm that includes complex conjugation and thus reverses a given quantum state. Using this algorithm on an IBM quantum computer enables us to experimentally demonstrate a backward time dynamics for an electron scattered on a two-level impurity.

[1]  Enrique Solano,et al.  Time reversal and charge conjugation in an embedding quantum simulator , 2014, Nature Communications.

[2]  M. Partovi,et al.  Entanglement versus Stosszahlansatz: disappearance of the thermodynamic arrow in a high-correlation environment. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  I. S. Oliveira,et al.  Experimental Rectification of Entropy Production by Maxwell's Demon in a Quantum System. , 2016, Physical review letters.

[4]  Timothy F. Havel,et al.  Ensemble quantum computing by NMR spectroscopy , 1997, Proc. Natl. Acad. Sci. USA.

[5]  L. Maccone Quantum solution to the arrow-of-time dilemma. , 2008, Physical review letters.

[6]  Jordan M. Horowitz,et al.  Quantum Fluctuation Theorems for Arbitrary Environments: Adiabatic and Nonadiabatic Entropy Production , 2017, Physical Review X.

[7]  John von Neumann,et al.  Proof of the ergodic theorem and the H-theorem in quantum mechanics , 2010, 1003.2133.

[8]  Jader P. Santos,et al.  Wigner Entropy Production Rate. , 2017, Physical review letters.

[9]  Joseph Gill,et al.  On the dynamical theory of heat , 1864 .

[10]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[11]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[12]  T. Rudolph,et al.  Entanglement and the thermodynamic arrow of time. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  A. Holster The criterion for time symmetry of probabilistic theories and the reversibility of quantum mechanics , 2003 .

[14]  E. Lutz,et al.  Nonequilibrium entropy production for open quantum systems. , 2011, Physical review letters.

[15]  John P. S. Peterson,et al.  Reversing the thermodynamic arrow of time using quantum correlations , 2017, 1711.03323.

[16]  G. B. Lesovik,et al.  H-theorem in quantum physics , 2014, Scientific Reports.

[17]  W. Thomson IX.—On the Dynamical Theory of Heat. Part V. Thermo-electric Currents , 1857, Transactions of the Royal Society of Edinburgh.

[18]  I. S. Oliveira,et al.  Irreversibility and the Arrow of Time in a Quenched Quantum System. , 2015, Physical review letters.

[19]  J. Lebowitz Statistical Mechanics: A Selective Review of Two Central Issues , 1999, math-ph/0010018.

[20]  T. Rudolph,et al.  Comment on "Quantum solution to the arrow-of-time dilemma". , 2009, Physical review letters.

[21]  P Gaspard,et al.  Entropy production and time asymmetry in nonequilibrium fluctuations. , 2007, Physical review letters.

[22]  A. Holevo The entropy gain of infinite-dimensional quantum evolutions , 2010, 1003.5765.

[23]  Wojciech H. Zurek Decoherence, chaos, quantum-classical correspondence, and the algorithmic arrow of time , 1998 .

[24]  G. B. Lesovik On the law of increasing entropy and the cause of the dynamics irreversibility of quantum systems , 2013 .

[25]  P. Talkner,et al.  Colloquium: Quantum fluctuation relations: Foundations and applications , 2010, 1012.2268.

[26]  L. Landau Das Dämpfungsproblem in der Wellenmechanik , 1927 .

[27]  S. Ruffo,et al.  Reconstructing quantum entropy production to probe irreversibility and correlations , 2017, Quantum Science and Technology.

[28]  Jader P. Santos,et al.  Characterizing Irreversibility in Open Quantum Systems , 2018, 1806.08441.

[29]  Ludwig Boltzmann,et al.  Entgegnung auf die wärmetheoretischen Betrachtungen des Hrn. E. Zermelo , 1896 .

[30]  N. Cerf,et al.  Operational formulation of time reversal in quantum theory , 2015, Nature Physics.

[31]  James Clerk Maxwell Illustrations of the Dynamical Theory of Gases , 1860 .

[32]  J. Neumann,et al.  Beweis des Ergodensatzes und desH-Theorems in der neuen Mechanik , 1929 .

[33]  Peter Hänggi,et al.  Fluctuation, Dissipation and the Arrow of Time , 2011, Entropy.

[34]  L. Boltzmann Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen , 1970 .

[35]  Statistical Mechanics: A Selective Review of Two Central Issues , 1999, math-ph/0010018.

[36]  James Clerk Maxwell,et al.  V. Illustrations of the dynamical theory of gases.—Part I. On the motions and collisions of perfectly elastic spheres , 1860 .

[37]  E. Wigner Ueber die Operation der Zeitumkehr in der Quantenmechanik , 1993 .

[38]  J. Parrondo,et al.  Entropy production and the arrow of time , 2009, 0904.1573.