Water-stable hydrazone-linked porous organic cages

Although porous organic cages (POCs), particularly imine-linked (C <svg xmlns="http://www.w3.org/2000/svg" version="1.0" width="13.200000pt" height="16.000000pt" viewBox="0 0 13.200000 16.000000" preserveAspectRatio="xMidYMid meet"><metadata> Created by potrace 1.16, written by Peter Selinger 2001-2019 </metadata><g transform="translate(1.000000,15.000000) scale(0.017500,-0.017500)" fill="currentColor" stroke="none"><path d="M0 440 l0 -40 320 0 320 0 0 40 0 40 -320 0 -320 0 0 -40z M0 280 l0 -40 320 0 320 0 0 40 0 40 -320 0 -320 0 0 -40z"/></g></svg> N) ones, have advanced significantly over the last few decades, the reversible nature of imine linkages makes them prone to hydrolysis and structural collapse, severely limiting their applications under moist or water conditions. Herein, seven water-stable hydrazone-linked (CN–N) POCs are prepared through a simple coupling of the same supramolecular tetraformylresorcin[4]arene cavitand with different dihydrazide linkers. Their structures are all determined by single-crystal X-ray crystallography, demonstrating rich structural diversity from the [2 + 4] lantern, [3 + 6] triangular prism, and unprecedented [4 + 8] square prism to the extra-large [6 + 12] octahedron. In addition, they respectively exhibit tunable window diameters and cavity volumes ranging from about 5.4 to 11.1 nm and 580 to 6800 Å3. Moreover, their application in the water environment for pollutant removal was explored, indicating that they can effectively eliminate various types of contaminants from water, including radionuclide waste, toxic heavy metal ions, and organic micropollutants. This work demonstrates a convenient method for rationally constructing versatile robust POCs and presents their great application potentialities in water medium.

[1]  R. Banerjee,et al.  Covalent Organic Frameworks and Supramolecular Nano-Synthesis , 2021, ACS Nano.

[2]  Yinghua Jin,et al.  Post-synthetic modification of porous organic cages. , 2021, Chemical Society reviews.

[3]  Yiliang Wang,et al.  One-pot and Shape-controlled Synthesis of Organic Cages. , 2021, Angewandte Chemie.

[4]  Yinghua Jin,et al.  By-design molecular architectures via alkyne metathesis , 2021, Chemical science.

[5]  Meilin Liu,et al.  SO2 Capture Using Porous Organic Cages , 2021, Angewandte Chemie.

[6]  Wenjing Wang,et al.  Solvatomorphism Influence of Porous Organic Cage on C2H2/CO2 Separation. , 2021, ACS applied materials & interfaces.

[7]  T. Bein,et al.  Isoreticular Crystallization of Highly Porous Cubic Covalent Organic Cage Compounds , 2021, Angewandte Chemie.

[8]  R. Schröder,et al.  Chiral Self‐sorting of Giant Cubic [8+12] Salicylimine Cage Compounds , 2021, Angewandte Chemie.

[9]  H. Yang,et al.  Orderly Porous Covalent Organic Frameworks-based Materials: Superior Adsorbents for Pollutants Removal from Aqueous Solutions , 2021, Innovation.

[10]  M. Baik,et al.  Gigantic Porphyrinic Cages , 2020, Chem.

[11]  Wenjing Wang,et al.  Efficient ethylene purification by a robust ethane-trapping porous organic cage , 2020, Nature Communications.

[12]  O. Yaghi,et al.  Design of higher valency in covalent organic frameworks , 2020, Science.

[13]  Wenjing Wang,et al.  Reticular Chemistry in Construction of Porous Organic Cages. , 2020, Journal of the American Chemical Society.

[14]  Zhongqun Tian,et al.  Truncated Face-Rotating Polyhedra Constructed from Pentagonal Pentaphenylpyrrole through Graph Theory. , 2020, Journal of the American Chemical Society.

[15]  N. Khashab,et al.  A Polymorphic Azobenzene Cage for Energy Efficient and Highly Selective p-Xylene Separation. , 2020, Angewandte Chemie.

[16]  T. He,et al.  Covalent Organic Frameworks: Pore Design and Interface Engineering. , 2020, Accounts of chemical research.

[17]  Ian D. Williams,et al.  Robust Supramolecular Nano-tunnels Built from Molecular Bricks. , 2020, Angewandte Chemie.

[18]  Liping Cao,et al.  Tetraphenylethene-Based Octacationic Cage. , 2019, Angewandte Chemie.

[19]  Eric D. Bloch,et al.  Permanently Microporous Metal-Organic Polyhedra. , 2020, Chemical reviews.

[20]  Xiaoyun Liu,et al.  Controlled Hierarchical Self-Assembly of Catenated Cages. , 2020, Journal of the American Chemical Society.

[21]  Hui Wang,et al.  Correction to "Water-Soluble Flexible Organic Frameworks That Include and Deliver Proteins". , 2020, Journal of the American Chemical Society.

[22]  B. Jena,et al.  A Thiadiazole-Based Covalent Organic Framework: A Metal-Free Electrocatalyst toward Oxygen Evolution Reaction , 2020 .

[23]  Zhengbo Han,et al.  Robust Cationic Calix[4]arene Polymer as an Efficient Catalyst for Cycloaddition of Epoxides with CO2 , 2020 .

[24]  R. Banerjee,et al.  Connecting Microscopic Structures, Meso-scale Assemblies, and Macroscopic Architectures in 3D-Printed Hierarchical Porous Covalent Organic Framework Foams. , 2020, Journal of the American Chemical Society.

[25]  Kunhui Liu,et al.  Elucidating heterogeneous photocatalytic superiority of microporous porphyrin organic cage , 2020, Nature Communications.

[26]  P. Horcajada,et al.  Metal-Organic Frameworks for the Removal of Emerging Organic Contaminants in Water. , 2020, Chemical reviews.

[27]  H. Jędrzejewska,et al.  Porous molecular capsules as non-polymeric transducers of mechanic forces to mechanophores. , 2020, Chemistry.

[28]  Lingyi Zou,et al.  De novo Construction of Catenane of Dissymmetric Cages via Space-Discriminative Post-Assembly Modification. , 2020, Angewandte Chemie.

[29]  T. He,et al.  Covalent Organic Frameworks: Design, Synthesis, and Functions. , 2020, Chemical reviews.

[30]  Guang‐Peng Wu,et al.  Self-assembly in water with N-substituted imines. , 2019, Angewandte Chemie.

[31]  Rebecca L. Greenaway,et al.  Accelerated robotic discovery of type II porous liquids† †Electronic supplementary information (ESI) available: Detailed synthetic procedures, experimental details and measurements (PDF). See DOI: 10.1039/c9sc03316e. , 2019, Chemical science.

[32]  P. Mukherjee,et al.  Organic Imine Cages: Molecular Marriage and Applications. , 2019, Angewandte Chemie.

[33]  Xiaolong Zou,et al.  Soft Porous Crystal Based upon Organic Cages That Exhibit Guest-Induced Breathing and Selective Gas Separation. , 2019, Journal of the American Chemical Society.

[34]  R. Schröder,et al.  Transformation of a [4+6] Salicylbisimine Cage to Chemically Robust Amide Cages , 2019, Angewandte Chemie.

[35]  R. Banerjee,et al.  Inducing Disorder in Order: Hierarchically Porous Covalent Organic Framework Nanostructures for Rapid Removal of Persistent Organic Pollutants. , 2019, Journal of the American Chemical Society.

[36]  T. Pal,et al.  Porosity Switching in Polymorphic Porous Organic Cages with Exceptional Chemical Stability. , 2019, Angewandte Chemie.

[37]  S. Kitagawa,et al.  Accumulation of Glassy Poly(ethylene oxide) Anchored in a Covalent Organic Framework as a Solid-State Li+ Electrolyte. , 2019, Journal of the American Chemical Society.

[38]  V. Lynch,et al.  Three-Dimensional Fully Conjugated Carbaporphyrin Cage. , 2018, Journal of the American Chemical Society.

[39]  Wenjing Wang,et al.  Azo-Bridged Calix[4]resorcinarene-Based Porous Organic Frameworks with Highly Efficient Enrichment of Volatile Iodine , 2018, ACS Sustainable Chemistry & Engineering.

[40]  Reiner Sebastian Sprick,et al.  Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water , 2018, Nature Chemistry.

[41]  M. Mastalerz Porous Shape-Persistent Organic Cage Compounds of Different Size, Geometry, and Function. , 2018, Accounts of chemical research.

[42]  Qi Zhang,et al.  Catalysis inside the Hexameric Resorcinarene Capsule. , 2018, Accounts of chemical research.

[43]  Christopher J. Chang,et al.  Iron Porphyrins Embedded into a Supramolecular Porous Organic Cage for Electrochemical CO2 Reduction in Water. , 2018, Angewandte Chemie.

[44]  Florian Beuerle,et al.  Covalent Organic Frameworks and Cage Compounds: Design and Applications of Polymeric and Discrete Organic Scaffolds. , 2018, Angewandte Chemie.

[45]  Rebecca L. Greenaway,et al.  Cage Doubling: Solvent-Mediated Re-equilibration of a [3 + 6] Prismatic Organic Cage to a Large [6 + 12] Truncated Tetrahedron , 2018 .

[46]  Xiao-Zhen Li,et al.  Evolution of Luminescent Supramolecular Lanthanide M2nL3n Complexes from Helicates and Tetrahedra to Cubes. , 2017, Journal of the American Chemical Society.

[47]  Wei Zhou,et al.  Versatile Assembly of Metal-Coordinated Calix[4]resorcinarene Cavitands and Cages through Ancillary Linker Tuning. , 2017, Journal of the American Chemical Society.

[48]  M. Szymański,et al.  A chiral member of the family of organic hexameric cages. , 2017, Chemical communications.

[49]  Nathan P. Walter,et al.  Impact of Shape Persistence on the Porosity of Molecular Cages. , 2017, Journal of the American Chemical Society.

[50]  A. Cooper,et al.  Porous organic cages: soluble, modular and molecular pores , 2016 .

[51]  T. Herng,et al.  Fully Fused Quinoidal/Aromatic Carbazole Macrocycles with Poly-radical Characters. , 2016, Journal of the American Chemical Society.

[52]  A. Cooper,et al.  Porous Organic Cage Thin Films and Molecular‐Sieving Membranes , 2016, Advanced materials.

[53]  Christopher M. Kane,et al.  Enclathration and Confinement of Small Gases by the Intrinsically 0D Porous Molecular Solid, Me,H,SiMe2. , 2016, Journal of the American Chemical Society.

[54]  Ming Dong,et al.  Thioether-Based Fluorescent Covalent Organic Framework for Selective Detection and Facile Removal of Mercury(II). , 2016, Journal of the American Chemical Society.

[55]  Jeffrey S. Moore,et al.  Kinetically Trapped Tetrahedral Cages via Alkyne Metathesis. , 2016, Journal of the American Chemical Society.

[56]  Yinghua Jin,et al.  Dynamic covalent synthesis of aryleneethynylene cages through alkyne metathesis: dimer, tetramer, or interlocked complex? , 2016, Chemical science.

[57]  Partha Sarathi Mukherjee,et al.  Molecular Cage Impregnated Palladium Nanoparticles: Efficient, Additive-Free Heterogeneous Catalysts for Cyanation of Aryl Halides. , 2016, Journal of the American Chemical Society.

[58]  William R. Dichtel,et al.  Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer , 2015, Nature.

[59]  V. Lynch,et al.  Quantitative self-assembly of a purely organic three-dimensional catenane in water. , 2015, Nature chemistry.

[60]  O. Yaghi,et al.  Chemistry of Covalent Organic Frameworks. , 2015, Accounts of chemical research.

[61]  Y. Ko,et al.  Porphyrin Boxes: Rationally Designed Porous Organic Cages. , 2015, Angewandte Chemie.

[62]  Huibi Xu,et al.  A Porous Tricyclooxacalixarene Cage Based on Tetraphenylethylene. , 2015, Angewandte Chemie.

[63]  Kenji Kobayashi,et al.  Self-assembled capsules based on tetrafunctionalized calix[4]resorcinarene cavitands. , 2015, Chemical Society reviews.

[64]  M. Zeller,et al.  Targeted synthesis of a large triazine-based [4+6] organic molecular cage: structure, porosity and gas separation. , 2015, Chemical communications.

[65]  Yinghua Jin,et al.  A tetrameric cage with D2h symmetry through alkyne metathesis. , 2014, Angewandte Chemie.

[66]  A. J. Blake,et al.  A Robust Binary Supramolecular Organic Framework (SOF) with High CO2 Adsorption and Selectivity , 2014, Journal of the American Chemical Society.

[67]  A. Cooper,et al.  Acid- and base-stable porous organic cages: shape persistence and pH stability via post-synthetic "tying" of a flexible amine cage. , 2014, Journal of the American Chemical Society.

[68]  Edward O. Pyzer-Knapp,et al.  Predicted crystal energy landscapes of porous organic cages , 2014 .

[69]  Philip Taynton,et al.  Dynamic covalent chemistry approaches toward macrocycles, molecular cages, and polymers. , 2014, Accounts of chemical research.

[70]  Gang Zhang,et al.  Organic cage compounds--from shape-persistency to function. , 2014, Chemical Society reviews.

[71]  A. Cooper,et al.  Dodecaamide cages: organic 12-arm building blocks for supramolecular chemistry. , 2013, Journal of the American Chemical Society.

[72]  Christian J. Doonan,et al.  Kinetically controlled porosity in a robust organic cage material. , 2013, Angewandte Chemie.

[73]  Iris M. Oppel,et al.  Post-modification of the interior of porous shape-persistent organic cage compounds. , 2013, Angewandte Chemie.

[74]  A. Cooper,et al.  Solution‐Processable Molecular Cage Micropores for Hierarchically Porous Materials , 2012, Advanced materials.

[75]  A. Cooper,et al.  Alkylated organic cages: from porous crystals to neat liquids , 2012 .

[76]  Iris M. Oppel,et al.  Periphery-substituted [4+6] salicylbisimine cage compounds with exceptionally high surface areas: influence of the molecular structure on nitrogen sorption properties. , 2012, Chemistry.

[77]  Wei Zhang,et al.  A highly C70 selective shape-persistent rectangular prism constructed through one-step alkyne metathesis. , 2011, Journal of the American Chemical Society.

[78]  S. Xiang,et al.  A microporous hydrogen-bonded organic framework for highly selective C2H2/C2H4 separation at ambient temperature. , 2011, Journal of the American Chemical Society.

[79]  T. Emge,et al.  Multicomponent assembly of cavitand-based polyacylhydrazone nanocapsules. , 2011, Chemistry.

[80]  A. Cooper,et al.  Modular and predictable assembly of porous organic molecular crystals , 2011, Nature.

[81]  R. Noble,et al.  Highly CO2-selective organic molecular cages: what determines the CO2 selectivity. , 2011, Journal of the American Chemical Society.

[82]  R. Noble,et al.  A shape-persistent organic molecular cage with high selectivity for the adsorption of CO2 over N2. , 2010, Angewandte Chemie.

[83]  A. Slawin,et al.  Porous organic cages. , 2009, Nature materials.

[84]  J. Atwood,et al.  Fluorescent Guest Molecules Report Ordered Inner Phase of Host Capsules in Solution , 2005, Science.

[85]  G J Kleywegt,et al.  Detection, delineation, measurement and display of cavities in macromolecular structures. , 1994, Acta crystallographica. Section D, Biological crystallography.

[86]  A. Spek PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. , 2015, Acta crystallographica. Section C, Structural chemistry.