Discrete-time orthogonal spline collocation method with application to two-dimensional fractional cable equation

Discrete-time orthogonal spline collocation (OSC) methods are presented for the two-dimensional fractional cable equation, which governs the dynamics of membrane potential in thin and long cylinders such as axons or dendrites in neurons. The proposed scheme is based on the OSC method for space discretization and finite difference method for time, which is proved to be unconditionally stable and convergent with the order O ( ? min ( 2 - γ 1 , 2 - γ 2 ) + h r + 1 ) in L 2 -norm, where ? , h and r are the time step size, space step size and polynomial degree, respectively, and γ 1 and γ 2 are two different exponents of fractional derivatives with 0 < γ 1 , γ 2 < 1 . Numerical experiments are presented to demonstrate the results of theoretical analysis and show the accuracy and effectiveness of the method described herein, and super-convergence phenomena at the partition nodes is also exhibited, which is a characteristic of the OSC methods, namely, the rates of convergence in the maximum norm at the partition nodes in u x and u y are approximately h r + 1 in our numerical experiment.

[1]  Zhi-Zhong Sun,et al.  Numerical Algorithm With High Spatial Accuracy for the Fractional Diffusion-Wave Equation With Neumann Boundary Conditions , 2013, J. Sci. Comput..

[2]  A. R. Mitchell,et al.  Product Approximation for Non-linear Problems in the Finite Element Method , 1981 .

[3]  S. Wearne,et al.  Fractional cable models for spiny neuronal dendrites. , 2008, Physical review letters.

[4]  Fanhai Zeng,et al.  Spectral approximations to the fractional integral and derivative , 2012 .

[5]  Jie Shen,et al.  Error Analysis of the Strang Time-Splitting Laguerre–Hermite/Hermite Collocation Methods for the Gross–Pitaevskii Equation , 2013, Found. Comput. Math..

[6]  Da Xu,et al.  The time discretization in classes of integro-differential equations with completely monotonic kernels: Weighted asymptotic stability , 2013 .

[7]  Marc Weilbeer,et al.  Efficient Numerical Methods for Fractional Differential Equations and their Analytical Background , 2005 .

[8]  William McLean,et al.  Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation , 2009, Numerical Algorithms.

[9]  Tao Tang,et al.  A finite difference scheme for partial integro-differential equations with a weakly singular kernel , 1993 .

[10]  I. Podlubny Fractional differential equations , 1998 .

[11]  Graeme Fairweather,et al.  Alternating Direction Implicit Orthogonal Spline Collocation Methods for an Evolution Equation with a Positive-Type Memory Term , 2007, SIAM J. Numer. Anal..

[12]  Graeme Fairweather,et al.  Spline collocation methods for a class of hyperbolic partial integro-differential equations , 1994 .

[13]  Weihua Deng,et al.  Finite Element Method for the Space and Time Fractional Fokker-Planck Equation , 2008, SIAM J. Numer. Anal..

[14]  G. Fairweather,et al.  Orthogonal spline collocation methods for partial di erential equations , 2001 .

[15]  K. Mustapha An implicit finite-difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements , 2011 .

[16]  Zhi-Zhong Sun,et al.  Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation , 2011, J. Comput. Phys..

[17]  Jim Douglas,et al.  Collocation Methods for Parabolic Equations in a Single Space Variable , 1974 .

[18]  Yanping Chen,et al.  A NOTE ON JACOBI SPECTRAL-COLLOCATION METHODS FOR WEAKLY SINGULAR VOLTERRA INTEGRAL EQUATIONS WITH SMOOTH SOLUTIONS * , 2013 .

[19]  Graeme Fairweather,et al.  ALTERNATING DIRECTION IMPLICIT , 2008 .

[20]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[21]  Da Xu,et al.  Orthogonal spline collocation method for the two-dimensional fractional sub-diffusion equation , 2014, J. Comput. Phys..

[22]  Xianjuan Li,et al.  Finite difference/spectral approximations for the fractional cable equation , 2010, Math. Comput..

[23]  G. Fairweather Finite Element Galerkin Methods for Differential Equations , 1978 .

[24]  S. B. Yuste,et al.  An Explicit Numerical Method for the Fractional Cable Equation , 2011 .

[25]  William McLean,et al.  A second-order accurate numerical method for a fractional wave equation , 2006, Numerische Mathematik.

[26]  Weihua Deng,et al.  Orthogonal spline collocation methods for the subdiffusion equation , 2014, J. Comput. Appl. Math..

[27]  Weiwei Sun Iterative Algorithms for Orthogonal Spline Collocation Linear Systems , 1995, SIAM J. Sci. Comput..

[28]  S. Wearne,et al.  Fractional cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions , 2009, Journal of mathematical biology.

[29]  Weiwei Sun Block iterative algorithms for solving Hermite bicubic collocation equations , 1996 .

[30]  Amiya K. Pani,et al.  ADI orthogonal spline collocation methods for parabolic partial integro–differential equations , 2010 .

[31]  Jingtang Ma,et al.  High-order finite element methods for time-fractional partial differential equations , 2011, J. Comput. Appl. Math..

[32]  Finite element methods of the two nonlinear integro-differential equations , 1993 .

[33]  William McLean,et al.  Superconvergence of a Discontinuous Galerkin Method for Fractional Diffusion and Wave Equations , 2012, SIAM J. Numer. Anal..

[34]  Xu Da,et al.  On the discretization in time for a parabolic integrodifferential equation with a weakly singular kernel II: nonsmooth initial data , 1993 .

[35]  Tao Tang,et al.  Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel , 2010, Math. Comput..

[36]  Graeme Fairweather,et al.  Orthogonal spline collocation methods for Schr\"{o}dinger-type equations in one space variable , 1994 .

[37]  Santos B. Yuste,et al.  On an explicit finite difference method for fractional diffusion equations , 2003, ArXiv.

[38]  Bruce Ian Henry,et al.  Fractional Cable Equation Models for Anomalous Electrodiffusion in Nerve Cells: Finite Domain Solutions , 2011, SIAM J. Appl. Math..

[39]  Mingrong Cui,et al.  Compact alternating direction implicit method for two-dimensional time fractional diffusion equation , 2012, J. Comput. Phys..

[40]  Fawang Liu,et al.  Numerical analysis for a variable-order nonlinear cable equation , 2011, J. Comput. Appl. Math..

[41]  Zhi‐zhong Sun,et al.  A fully discrete difference scheme for a diffusion-wave system , 2006 .

[42]  Kassem Mustapha,et al.  A finite difference method for an anomalous sub-diffusion equation, theory and applications , 2012, Numerical Algorithms.

[43]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[44]  Santos B. Yuste,et al.  An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations , 2004, SIAM J. Numer. Anal..

[45]  I. Turner,et al.  Two New Implicit Numerical Methods for the Fractional Cable Equation , 2011 .

[46]  Zhongqing Wang,et al.  A LEGENDRE-GAUSS COLLOCATION METHOD FOR NONLINEAR DELAY DIFFERENTIAL EQUATIONS , 2010 .

[47]  Weiwei Sun Spectral Analysis of Hermite Cubic Spline Collocation Systems , 1999 .

[48]  Lu-ming Zhang,et al.  Implicit compact difference schemes for the fractional cable equation , 2012 .

[49]  Kassem Mustapha Numerical solution for a sub-diffusion equation with a smooth kernel , 2009, J. Comput. Appl. Math..

[50]  Graeme Fairweather,et al.  Analysis of alternating direction collocation methods for parabolic and hyperbolic problems in two space variables , 1993 .