Correlated electron systems periodically driven out of equilibrium: Floquet+DMFT formalism

We propose to combine the Floquet formalism for systems in ac fields with the dynamical mean-field theory to study correlated electron systems periodically driven out of equilibrium by external fields such as intense laser light. This approach has a virtue that we can nonperturbatively include both the correlation effects and nonlinear effects due to the driving field, which is imperative in analyzing recent experiments for photoinduced phase transitions. In solving the problem, we exploit a general theorem that the Hamiltonian in a Floquet matrix form can be exactly diagonalized for single-band noninteracting systems. As a demonstration, we have applied the method to the Falicov-Kimball model in intense ac fields to calculate the spectral function. The result shows that photoinduced midgap states emerge from strong ac fields, triggering an insulator-metal transition.

[1]  Miyano,et al.  Visualization of the local insulator-metal transition in Pr0.7Ca0. 3MnO3 , 1998, Science.

[2]  S. V. Bulanov,et al.  Optics in the relativistic regime , 2006 .

[3]  D. F. Martinez Floquet–Green function formalism for harmonically driven Hamiltonians , 2003 .

[4]  D. Vollhardt,et al.  Correlated Lattice Fermions in High Dimensions , 1989 .

[5]  Dunlap,et al.  Dynamic localization of a charged particle moving under the influence of an electric field. , 1986, Physical review. B, Condensed matter.

[6]  P. Hänggi,et al.  Quantum Transport and Dissipation , 1998 .

[7]  Georges,et al.  Hubbard model in infinite dimensions. , 1992, Physical review. B, Condensed matter.

[8]  K. Nasu Itinerant type many-body theories for photo-induced structural phase transitions , 2004 .

[9]  W. Krauth,et al.  Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions , 1996 .

[10]  J. Kono,et al.  Excitonic Dynamical Franz-Keldysh Effect , 1998, cond-mat/9804254.

[11]  H. Sambe Steady States and Quasienergies of a Quantum-Mechanical System in an Oscillating Field , 1973 .

[12]  Y. Tomioka,et al.  Photoinduced Insulator-to-Metal Transition in a Perovskite Manganite , 1997 .

[13]  Julian Schwinger,et al.  Brownian Motion of a Quantum Oscillator , 1961 .

[14]  Jon H. Shirley,et al.  Solution of the Schrödinger Equation with a Hamiltonian Periodic in Time , 1965 .

[15]  J. Freericks,et al.  Spectral moment sum rules for strongly correlated electrons in time-dependent electric fields , 2006 .

[16]  M. Oberthaler,et al.  Dynamics of Bose-Einstein condensates in optical lattices , 2006 .

[17]  J. Freericks,et al.  Nonequilibrium dynamical mean-field theory. , 2006, Physical Review Letters.

[18]  G. Floquet,et al.  Sur les équations différentielles linéaires à coefficients périodiques , 1883 .

[19]  D. Hoffman,et al.  A time-independent wavepacket approach to the ( t, t')-method for treating time-dependent Hamiltonian systems , 1997 .

[20]  V. Vieira,et al.  Strongly correlated systems, coherence and entanglement , 2007 .

[21]  J. C. Kimball,et al.  Simple Model for Semiconductor-Metal Transitions: SmB6and Transition-Metal Oxides , 1969 .

[22]  Y. Tokura A Tool for Generating a Hidden State of Matter , 2006 .

[23]  H Okamoto,et al.  Ultrafast photoinduced insulator-ferromagnet transition in the perovskite manganite Gd0.55Sr0.45MnO3. , 2007, Physical review letters.

[24]  R. Kubo Statistical-Mechanical Theory of Irreversible Processes : I. General Theory and Simple Applications to Magnetic and Conduction Problems , 1957 .

[25]  Martin Eckstein,et al.  Nonthermal steady states after an interaction quench in the Falicov-Kimball model. , 2007, Physical review letters.

[26]  D. Boulware GAUGE INVARIANCE AND CURRENT DEFINITION IN QUANTUM ELECTRODYNAMICS. , 1966 .

[27]  T. Pruschke,et al.  Steady-state nonequilibrium density of States of driven strongly correlated lattice models in infinite dimensions. , 2008, Physical review letters.

[28]  Minh-Tien Tran Initial correlations in a nonequilibrium Falicov-Kimball model , 2008, 0808.3245.

[29]  J. K. Freericks,et al.  Quenching Bloch oscillations in a strongly correlated material: Nonequilibrium dynamical mean-field theory , 2007, 0711.0999.

[30]  Nonlinear response of Bloch electrons in infinite dimensions , 2004, cond-mat/0408455.

[31]  E. Müller-Hartmann,et al.  Correlated fermions on a lattice in high dimensions , 1989 .

[32]  J. Freericks,et al.  Exact dynamical mean-field theory of the Falicov-Kimball model , 2003 .