Correlated electron systems periodically driven out of equilibrium: Floquet+DMFT formalism
暂无分享,去创建一个
Hideo Aoki | T. Oka | H. Aoki | N. Tsuji | Naoto Tsuji | Takashi Oka
[1] Miyano,et al. Visualization of the local insulator-metal transition in Pr0.7Ca0. 3MnO3 , 1998, Science.
[2] S. V. Bulanov,et al. Optics in the relativistic regime , 2006 .
[3] D. F. Martinez. Floquet–Green function formalism for harmonically driven Hamiltonians , 2003 .
[4] D. Vollhardt,et al. Correlated Lattice Fermions in High Dimensions , 1989 .
[5] Dunlap,et al. Dynamic localization of a charged particle moving under the influence of an electric field. , 1986, Physical review. B, Condensed matter.
[6] P. Hänggi,et al. Quantum Transport and Dissipation , 1998 .
[7] Georges,et al. Hubbard model in infinite dimensions. , 1992, Physical review. B, Condensed matter.
[8] K. Nasu. Itinerant type many-body theories for photo-induced structural phase transitions , 2004 .
[9] W. Krauth,et al. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions , 1996 .
[10] J. Kono,et al. Excitonic Dynamical Franz-Keldysh Effect , 1998, cond-mat/9804254.
[11] H. Sambe. Steady States and Quasienergies of a Quantum-Mechanical System in an Oscillating Field , 1973 .
[12] Y. Tomioka,et al. Photoinduced Insulator-to-Metal Transition in a Perovskite Manganite , 1997 .
[13] Julian Schwinger,et al. Brownian Motion of a Quantum Oscillator , 1961 .
[14] Jon H. Shirley,et al. Solution of the Schrödinger Equation with a Hamiltonian Periodic in Time , 1965 .
[15] J. Freericks,et al. Spectral moment sum rules for strongly correlated electrons in time-dependent electric fields , 2006 .
[16] M. Oberthaler,et al. Dynamics of Bose-Einstein condensates in optical lattices , 2006 .
[17] J. Freericks,et al. Nonequilibrium dynamical mean-field theory. , 2006, Physical Review Letters.
[18] G. Floquet,et al. Sur les équations différentielles linéaires à coefficients périodiques , 1883 .
[19] D. Hoffman,et al. A time-independent wavepacket approach to the ( t, t')-method for treating time-dependent Hamiltonian systems , 1997 .
[20] V. Vieira,et al. Strongly correlated systems, coherence and entanglement , 2007 .
[21] J. C. Kimball,et al. Simple Model for Semiconductor-Metal Transitions: SmB6and Transition-Metal Oxides , 1969 .
[22] Y. Tokura. A Tool for Generating a Hidden State of Matter , 2006 .
[23] H Okamoto,et al. Ultrafast photoinduced insulator-ferromagnet transition in the perovskite manganite Gd0.55Sr0.45MnO3. , 2007, Physical review letters.
[24] R. Kubo. Statistical-Mechanical Theory of Irreversible Processes : I. General Theory and Simple Applications to Magnetic and Conduction Problems , 1957 .
[25] Martin Eckstein,et al. Nonthermal steady states after an interaction quench in the Falicov-Kimball model. , 2007, Physical review letters.
[26] D. Boulware. GAUGE INVARIANCE AND CURRENT DEFINITION IN QUANTUM ELECTRODYNAMICS. , 1966 .
[27] T. Pruschke,et al. Steady-state nonequilibrium density of States of driven strongly correlated lattice models in infinite dimensions. , 2008, Physical review letters.
[28] Minh-Tien Tran. Initial correlations in a nonequilibrium Falicov-Kimball model , 2008, 0808.3245.
[29] J. K. Freericks,et al. Quenching Bloch oscillations in a strongly correlated material: Nonequilibrium dynamical mean-field theory , 2007, 0711.0999.
[30] Nonlinear response of Bloch electrons in infinite dimensions , 2004, cond-mat/0408455.
[31] E. Müller-Hartmann,et al. Correlated fermions on a lattice in high dimensions , 1989 .
[32] J. Freericks,et al. Exact dynamical mean-field theory of the Falicov-Kimball model , 2003 .