Failure Probabilities of FRP Strengthened RC Column to Blast Loads

Probability analysis is commonly used to estimate the structural damage subjected to the static loads as well as dynamic loads such as earthquakes, wind and blast loads. Blast loads is difficult to predict accurately due to the parameters that influence the uncertainty in the blast shock wave propagation and shock wave-structures interaction. However, probability analysis of the structural damage can be carried out by considering all the blast load parameters and the structural properties. Instead, scale distance factors (producing various pressures and impulses) also affect the uncertainty of variations in structure damage to blast load and analysis of blast-resistant design. This study presents a reliability analysis of unstrengthened and FRP strengthened RC columns to blast loads. Three different parameter examples of unstrengthened reinforced concrete (RC) columns and Fibre Reinforced Polymer (FRP) strengthened RC column are used. The failure probabilities of RC columns under different level blast load corresponding to different range of scaled distances are estimated and presented. The results indicate reliability analysis gives range of scaled distances with different probabilities of column collapse.