Standard versus accelerated riboflavin–ultraviolet corneal collagen crosslinking: Resistance against enzymatic digestion

[1]  Dimitra M. Portaliou,et al.  Safety of high‐intensity corneal collagen crosslinking , 2014, Journal of cataract and refractive surgery.

[2]  D. O’Brart,et al.  Corneal collagen cross-linking: a review. , 2014, Journal of optometry.

[3]  G. Waring,et al.  High‐irradiance accelerated collagen crosslinking for the treatment of keratoconus: Six‐month results , 2014, Journal of cataract and refractive surgery.

[4]  Tukezban Huseynova,et al.  Accelerated versus conventional corneal collagen crosslinking , 2014, Journal of cataract and refractive surgery.

[5]  Yasin Cinar,et al.  Accelerated corneal collagen cross-linking for progressive keratoconus , 2014, Cutaneous and ocular toxicology.

[6]  F. Hafezi,et al.  Corneal biomechanical properties at different corneal cross-linking (CXL) irradiances. , 2014, Investigative ophthalmology & visual science.

[7]  G. Kymionis,et al.  Corneal stroma demarcation line after standard and high‐intensity collagen crosslinking determined with anterior segment optical coherence tomography , 2014, Journal of cataract and refractive surgery.

[8]  P. French,et al.  Two-photon fluorescence microscopy of corneal riboflavin absorption. , 2014, Investigative ophthalmology & visual science.

[9]  G. Snibson,et al.  A randomized, controlled trial of corneal collagen cross-linking in progressive keratoconus: three-year results. , 2014, Ophthalmology.

[10]  L. Módis,et al.  Intraoperative and Postoperative Corneal Thickness Change after Collagen Crosslinking Therapy , 2014, European journal of ophthalmology.

[11]  A E Davidson,et al.  The pathogenesis of keratoconus , 2014, Eye.

[12]  B. Derby,et al.  Biomechanical properties of human corneas following low- and high-intensity collagen cross-linking determined with scanning acoustic microscopy. , 2013, Investigative ophthalmology & visual science.

[13]  G. Kymionis,et al.  Evaluation of the Corneal Collagen Cross-Linking Demarcation Line Profile Using Anterior Segment Optical Coherence Tomography , 2013, Cornea.

[14]  R. McDonald,et al.  Long-term follow-up of riboflavin/ultraviolet A (370 nm) corneal collagen cross-linking to halt the progression of keratoconus , 2013, British Journal of Ophthalmology.

[15]  Giuliano Scarcelli,et al.  Brillouin microscopy of collagen crosslinking: noncontact depth-dependent analysis of corneal elastic modulus. , 2013, Investigative ophthalmology & visual science.

[16]  Jeremy Wernli,et al.  The efficacy of corneal cross-linking shows a sudden decrease with very high intensity UV light and short treatment time. , 2013, Investigative ophthalmology & visual science.

[17]  A. Quantock,et al.  The Effect of Riboflavin/UVA Collagen Cross-linking Therapy on the Structure and Hydrodynamic Behaviour of the Ungulate and Rabbit Corneal Stroma , 2013, PloS one.

[18]  N. Efron,et al.  Corneal confocal microscopy following conventional, transepithelial, and accelerated corneal collagen cross-linking procedures for keratoconus. , 2012, Journal of refractive surgery.

[19]  A. C. Cheng,et al.  Corneal collagen cross-linking demarcation line depth assessed by Visante OCT After CXL for keratoconus and corneal ectasia. , 2012, Journal of refractive surgery.

[20]  A. Kanellopoulos Long term results of a prospective randomized bilateral eye comparison trial of higher fluence, shorter duration ultraviolet A radiation, and riboflavin collagen cross linking for progressive keratoconus , 2012, Clinical ophthalmology.

[21]  Michael Mrochen,et al.  Equivalence of biomechanical changes induced by rapid and standard corneal cross-linking, using riboflavin and ultraviolet radiation. , 2011, Investigative ophthalmology & visual science.

[22]  S. Greenstein,et al.  Corneal thickness changes after corneal collagen crosslinking for keratoconus and corneal ectasia: One‐year results , 2011, Journal of cataract and refractive surgery.

[23]  D. O’Brart,et al.  A randomised, prospective study to investigate the efficacy of riboflavin/ultraviolet A (370 nm) corneal collagen cross-linkage to halt the progression of keratoconus , 2011, British Journal of Ophthalmology.

[24]  L. Spadea Corneal collagen cross-linking with riboflavin and UVA irradiation in pellucid marginal degeneration. , 2010, Journal of refractive surgery.

[25]  F. Raiskup,et al.  Pharmacological Modification of the Epithelial Permeability by Benzalkonium Chloride in UVA/Riboflavin Corneal Collagen Cross-Linking , 2010, Current eye research.

[26]  Tos T. J. M. Berendschot,et al.  Use of anterior segment optical coherence tomography to study corneal changes after collagen cross-linking. , 2009, American journal of ophthalmology.

[27]  Ecosse Lamoureux,et al.  A randomized controlled trial of corneal collagen cross-linking in progressive keratoconus: preliminary results. , 2008, Journal of refractive surgery.

[28]  T. Seiler,et al.  Corneal collagen crosslinking with riboflavin and ultraviolet A to treat induced keratectasia after laser in situ keratomileusis , 2007, Journal of cataract and refractive surgery.

[29]  Cristina Tommasi,et al.  Treatment of Progressive Keratoconus by Riboflavin-UVA-Induced Cross-Linking of Corneal Collagen: Ultrastructural Analysis by Heidelberg Retinal Tomograph II In Vivo Confocal Microscopy in Humans , 2007, Cornea.

[30]  Theo Seiler,et al.  Safety of UVA-Riboflavin Cross-Linking of the Cornea , 2007, Cornea.

[31]  Farhad Hafezi,et al.  Corneal Cross-Linking-Induced Stromal Demarcation Line , 2006, Cornea.

[32]  Claudio Traversi,et al.  Parasurgical therapy for keratoconus by riboflavin–ultraviolet type A rays induced cross‐linking of corneal collagen: Preliminary refractive results in an Italian study , 2006, Journal of cataract and refractive surgery.

[33]  Theo Seiler,et al.  Increased resistance of crosslinked cornea against enzymatic digestion , 2004, Current eye research.

[34]  T. Seiler,et al.  Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. , 2003, American journal of ophthalmology.

[35]  K. Meek,et al.  Swelling studies on the cornea and sclera: the effects of pH and ionic strength. , 1999, Biophysical journal.

[36]  J. Sugar,et al.  Expression of degradative enzymes and protease inhibitors in corneas with keratoconus. , 1998, Investigative ophthalmology & visual science.

[37]  F. Bettelheim,et al.  Water gradients across bovine cornea. , 1988, Investigative ophthalmology & visual science.

[38]  H. Oxlund,et al.  Biomechanical properties of keratoconus and normal corneas. , 1980, Experimental eye research.

[39]  F. Bettelheim,et al.  The hydration of proteoglycans of bovine cornea. , 1975, Biochimica et biophysica acta.

[40]  G. Conrad,et al.  Mechanisms of corneal tissue cross-linking in response to treatment with topical riboflavin and long-wavelength ultraviolet radiation (UVA). , 2010, Investigative ophthalmology & visual science.

[41]  E. Spoerl,et al.  Induction of cross-links in corneal tissue. , 1998, Experimental eye research.

[42]  Henry Enfield Roscoe,et al.  III. Photochemical researches.—Part V. On the measurement of the chemical action of direct and diffuse sunlight , 1863, Proceedings of the Royal Society of London.