On the numerical properties of high‐order spectral (Euler‐Bernoulli) beam elements

[1]  S. Kapuria,et al.  C1-continuous time-domain spectral finite element for modeling guided wave propagation in laminated composite strips based on third-order theory , 2022, Composite Structures.

[2]  S. Kapuria,et al.  Time-domain spectral finite element based on third-order theory for efficient modelling of guided wave propagation in beams and panels , 2022, Acta Mechanica.

[3]  P. Fromme,et al.  On ultrasound propagation in composite laminates: advances in numerical simulation , 2022, Progress in Aerospace Sciences.

[4]  S. Eisenträger,et al.  High-order implicit time integration scheme based on Padé expansions , 2021, Computer Methods in Applied Mechanics and Engineering.

[5]  S. Eisenträger,et al.  Stability analysis of plates using cut Bogner-Fox-Schmit elements , 2022, Computers & Structures.

[6]  S. Kapuria,et al.  Finite element simulation of axisymmetric elastic and electroelastic wave propagation using local-domain wave packet enrichment , 2021 .

[7]  C. S. Rekatsinas,et al.  An extended layerwise spectral finite element framework for delamination growth simulation in laminated composite strips , 2021 .

[8]  Tom Druet,et al.  Experimental Validation of Transient Spectral Finite Element Simulation Tools Dedicated to Guided Wave-Based Structural Health Monitoring , 2021, Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems.

[9]  H. Gravenkamp,et al.  A massively parallel explicit solver for elasto-dynamic problems exploiting octree meshes , 2021, Computer Methods in Applied Mechanics and Engineering.

[10]  Xianming Wang,et al.  Matching Boundary Conditions for the Euler–Bernoulli Beam , 2021, Shock and Vibration.

[11]  S. Kapuria,et al.  A C1‐continuous time domain spectral finite element for wave propagation analysis of Euler–Bernoulli beams , 2021, International Journal for Numerical Methods in Engineering.

[12]  J. F. Doyle Wave Propagation in Structures , 2021, Mechanical Engineering Series.

[13]  C. Pantea,et al.  Ultrasonic waves from radial mode excitation of a piezoelectric disc on the surface of an elastic solid , 2020, Smart Materials and Structures.

[14]  Elena Atroshchenko,et al.  On the condition number of high order finite element methods: Influence of p-refinement and mesh distortion , 2020, Comput. Math. Appl..

[15]  Alfio Quarteroni,et al.  A Computational Comparison Between Isogeometric Analysis and Spectral Element Methods: Accuracy and Spectral Properties , 2020, Journal of Scientific Computing.

[16]  S. Kapuria,et al.  A wave packet enriched finite element for electroelastic wave propagation problems , 2020 .

[17]  Chongmin Song,et al.  Discrete modeling of fiber reinforced composites using the scaled boundary finite element method , 2020 .

[18]  Mats G. Larson,et al.  Cut Bogner-Fox-Schmit elements for plates , 2019, Adv. Model. Simul. Eng. Sci..

[19]  Ji Wang,et al.  The axisymmetric Rayleigh waves in a semi-infinite elastic solid , 2020 .

[20]  W. Duan,et al.  Investigation of guided wave properties of anisotropic composite laminates using a semi-analytical finite element method , 2019, Composites Part B: Engineering.

[21]  Hauke Gravenkamp,et al.  Mass lumping techniques in the spectral element method: On the equivalence of the row-sum, nodal quadrature, and diagonal scaling methods , 2019, Computer Methods in Applied Mechanics and Engineering.

[22]  Hauke Gravenkamp,et al.  Critical assessment of different mass lumping schemes for higher order serendipity finite elements , 2019, Computer Methods in Applied Mechanics and Engineering.

[23]  Po-Hsun Huang,et al.  Wave number–spiral acoustic tweezers for dynamic and reconfigurable manipulation of particles and cells , 2019, Science Advances.

[24]  R. Ganguli,et al.  Stochastic time domain spectral element analysis of beam structures , 2018, Acta Mechanica.

[25]  Magdalena Palacz,et al.  Spectral Methods for Modelling of Wave Propagation in Structures in Terms of Damage Detection—A Review , 2018, Applied Sciences.

[26]  S. P. Oliveira,et al.  Error analysis of the spectral element method with Gauss–Lobatto–Legendre points for the acoustic wave equation in heterogeneous media , 2018, Applied Numerical Mathematics.

[27]  S. Kapuria,et al.  An enriched finite element method for general wave propagation problems using local element domain harmonic enrichment functions , 2018 .

[28]  Dimitrios Chronopoulos,et al.  Calculation of guided wave interaction with nonlinearities and generation of harmonics in composite structures through a wave finite element method , 2018 .

[29]  Santosh Kapuria,et al.  Active detection of block mass and notch‐type damages in metallic plates using a refined time‐reversed Lamb wave technique , 2018 .

[30]  D. Saravanos,et al.  A cubic spline layerwise time domain spectral FE for guided wave simulation in laminated composite plate structures with physically modeled active piezoelectric sensors , 2017 .

[31]  Chenhui Su,et al.  Computation of Rayleigh Damping Coefficients for the Seismic Analysis of a Hydro-Powerhouse , 2017 .

[32]  D. Saravanos,et al.  A time domain spectral layerwise finite element for wave structural health monitoring in composite strips with physically modeled active piezoelectric actuators and sensors , 2017 .

[33]  Shuai He,et al.  Guided wave-based identification of multiple cracks in beams using a Bayesian approach , 2017 .

[34]  Alexander Tessler,et al.  A quadrilateral inverse-shell element with drilling degrees of freedom for shape sensing and structural health monitoring , 2016 .

[35]  Emiliano Rustighi,et al.  Modelling piezoelectric excitation in waveguides using the semi-analytical finite element method , 2016 .

[36]  E. Carrera,et al.  Bending and vibrations analyses of laminated beams by using a zig-zag-layer-wise theory , 2016 .

[37]  Naohiro Nakamura,et al.  Extended Rayleigh Damping Model , 2016, Front. Built Environ..

[38]  Santosh Kapuria,et al.  A refined Lamb wave time-reversal method with enhanced sensitivity for damage detection in isotropic plates , 2016 .

[39]  T. Chuang,et al.  Mechanical properties of single-walled carbon nanotube reinforced polymer composites with varied interphase's modulus and thickness: A finite element analysis study. , 2016, Computational materials science.

[40]  S. Kapuria,et al.  Spectral finite element for wave propagation analysis of laminated composite curved beams using classical and first order shear deformation theories , 2015 .

[41]  S. Kapuria,et al.  Spectral Finite Element for Wave Propagation in Curved Beams , 2015 .

[42]  U. Gabbert,et al.  Finite and spectral cell method for wave propagation in heterogeneous materials , 2014 .

[43]  Xinwei Wang,et al.  Accurate modeling of PZT-induced Lamb wave propagation in structures by using a novel spectral finite element method , 2014 .

[44]  Santosh Kapuria,et al.  Spectral finite element based on an efficient layerwise theory for wave propagation analysis of composite and sandwich beams , 2014 .

[45]  C. Pozrikidis,et al.  Introduction to finite and spectral element methods using MATLAB , 2014 .

[46]  Zhengjia He,et al.  Wave motion analysis in arch structures via wavelet finite element method , 2014 .

[47]  Kuldeep Lonkar,et al.  Modeling of piezo-induced ultrasonic wave propagation in composite structures using layered solid spectral element , 2014 .

[48]  H. R. Mirdamadi,et al.  Frequency-dependent vibration analysis of symmetric cross-ply laminated plate of Levy-type by spectral element and finite strip procedures , 2013 .

[49]  B. Akgöz,et al.  Free vibration analysis of axially functionally graded tapered Bernoulli–Euler microbeams based on the modified couple stress theory , 2013 .

[50]  U. Gabbert,et al.  Semi-analytical finite element method for modeling of lamb wave propagation , 2013 .

[51]  Guang Meng,et al.  Wave Propagation Analysis in Composite Laminates Containing a Delamination Using a Three-Dimensional Spectral Element Method , 2012 .

[52]  Helsin Wang,et al.  Determination of Poisson's ratio of solid circular rods by impact-echo method , 2012 .

[53]  K. Fujiwara,et al.  Dynamic finite element analysis of impulsive stress waves propagating from distal end of femur. , 2012, Acta medica Okayama.

[54]  Marek Krawczuk,et al.  Certain numerical issues of wave propagation modelling in rods by the Spectral Finite Element Method , 2011 .

[55]  Claus-Peter Fritzen,et al.  A modelling approach for virtual development of wave based SHM systems , 2011 .

[56]  F. F. Mahmoud,et al.  Free vibration characteristics of a functionally graded beam by finite element method , 2011 .

[57]  Claus-Peter Fritzen,et al.  Simulation of wave propagation in damped composite structures with piezoelectric coupling , 2011 .

[58]  John A. Evans,et al.  Isogeometric Analysis , 2010 .

[59]  Sigal Gottlieb,et al.  Spectral Methods , 2019, Numerical Methods for Diffusion Phenomena in Building Physics.

[60]  B. Mace,et al.  Modelling wave propagation in two-dimensional structures using finite element analysis , 2008 .

[61]  G. N. Labeas,et al.  Multi-scale modeling of tensile behavior of carbon nanotube-reinforced composites , 2008 .

[62]  Pawel Kudela,et al.  Wave Propagation Modelling in Composite Plates , 2007 .

[63]  Ranjan Ganguli,et al.  Free vibration and wave propagation analysis of uniform and tapered rotating beams using spectrally formulated finite elements , 2007 .

[64]  Marek Krawczuk,et al.  Modelling of wave propagation in composite plates using the time domain spectral element method , 2007 .

[65]  Carlos E. S. Cesnik,et al.  Review of guided-wave structural health monitoring , 2007 .

[66]  Marek Krawczuk,et al.  Wave propagation modelling in 1D structures using spectral finite elements , 2007 .

[67]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[68]  Srinivasan Gopalakrishnan,et al.  A Spectral Finite Element Model for Wave Propagation Analysis in Laminated Composite Plate , 2006 .

[69]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[70]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[71]  W. Ostachowicz,et al.  The spectral finite element model for analysis of flexural–shear coupled wave propagation , 2005 .

[72]  Gang Wang,et al.  Free Vibration Analysis of Rotating Blades With Uniform Tapers , 2004 .

[73]  G. Cohen,et al.  Higher-Order Numerical Methods for Transient Wave Equations , 2001 .

[74]  J. Semblat,et al.  EFFICIENCY OF HIGHER ORDER FINITE ELEMENTS FOR THE ANALYSIS OF SEISMIC WAVE PROPAGATION , 2000, 0901.3715.

[75]  J. Maître,et al.  Condition number and diagonal preconditioning: comparison of the $p$-version and the spectral element methods , 1996 .

[76]  Elwood T. Olsen,et al.  Bounds on spectral condition numbers of matrices arising in the $p$-version of the finite element method , 1995 .

[77]  Andrew Y. T. Leung,et al.  Dynamic Stiffness and Substructures , 1993 .

[78]  Maenghyo Cho,et al.  Efficient higher order composite plate theory for general lamination configurations , 1993 .

[79]  Géza Seriani,et al.  Numerical simulation of interface waves by high‐order spectral modeling techniques , 1992 .

[80]  R. Lee,et al.  A study of discretization error in the finite element approximation of wave solutions , 1992 .

[81]  Cv Clemens Verhoosel,et al.  Non-Linear Finite Element Analysis of Solids and Structures , 1991 .

[82]  A. H. Shah,et al.  Wave propagation in laminated composite plates , 1988 .

[83]  David S. Malkus,et al.  Zero and negative masses in finite element vibration and transient analysis , 1986 .

[84]  J. Reddy A Simple Higher-Order Theory for Laminated Composite Plates , 1984 .

[85]  A. Patera A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .

[86]  Charles E. Smith,et al.  Vibration Modes of Centrifugally Stiffened Beams , 1982 .

[87]  A. Ambardar,et al.  Wave propagation in a piezoelectric two‐layered cylindrical shell with hexagonal symmetry: Some implications for long bone , 1978 .

[88]  Isaac Fried,et al.  Finite element mass matrix lumping by numerical integration with no convergence rate loss , 1975 .

[89]  L. A. Schmit,et al.  Finite deflection structural analysis using plate and shell discreteelements. , 1968 .

[90]  R. Guyan Reduction of stiffness and mass matrices , 1965 .