Camellia: A software framework for discontinuous Petrov-Galerkin methods

The discontinuous Petrov–Galerkin (DPG) methodology of Demkowicz and Gopalakrishnan minimizes the solution residual in a user-determinable energy norm and offers a built-in mechanism for evaluating error in the energy norm, among other desirable features. However, the methodology also brings with it some additional complexity for researchers who wish to experiment with DPG in their computations. In this paper, we introduce Camellia , a software framework whose central design goal is to enable developers to create efficient hp h p -adaptive DPG solvers with minimal effort.

[1]  Martin Kronbichler,et al.  Algorithms and data structures for massively parallel generic adaptive finite element codes , 2011, ACM Trans. Math. Softw..

[2]  L. Kovasznay Laminar flow behind a two-dimensional grid , 1948 .

[3]  Leszek Demkowicz,et al.  A Class of Discontinuous Petrov–Galerkin Methods. Part I: The Transport Equation , 2010 .

[4]  Victor M. Calo,et al.  A class of discontinuous Petrov-Galerkin methods. Part IV: The optimal test norm and time-harmonic wave propagation in 1D , 2011, J. Comput. Phys..

[5]  Nathan Vanderkooy Roberts A discontinuous Petrov-Galerkin methodology for incompressible flow problems , 2013 .

[6]  Pavel B. Bochev,et al.  On the Finite Element Solution of the Pure Neumann Problem , 2005, SIAM Rev..

[7]  Benjamin S. Kirk,et al.  Library for Parallel Adaptive Mesh Refinement / Coarsening Simulations , 2006 .

[8]  Tamara G. Kolda,et al.  An overview of the Trilinos project , 2005, TOMS.

[9]  Timothy A. Davis,et al.  Algorithm 907 , 2010 .

[10]  Wolfgang Bangerth,et al.  Concepts for Object-Oriented Finite Element Software - the deal.II Library , 1999 .

[11]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[12]  Anders Logg Automated solution of differential equations , 2007 .

[13]  Maciej Paszyński,et al.  Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume II Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications , 2007 .

[14]  Nathan V. Roberts,et al.  The DPG method for the Stokes problem , 2014, Comput. Math. Appl..

[15]  Victor M. Calo,et al.  A class of discontinuous Petrov-Galerkin methods. Part IV: Wave propagation , 2011 .

[16]  Leszek Demkowicz,et al.  A class of discontinuous Petrov–Galerkin methods. II. Optimal test functions , 2011 .

[17]  Robert D. Moser,et al.  A DPG method for steady viscous compressible flow , 2014 .

[18]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[19]  Rob Stevenson,et al.  A Petrov-Galerkin discretization with optimal test space of a mild-weak formulation of convection-diffusion equations in mixed form , 2015 .

[20]  Jesse Chan,et al.  Locally conservative discontinuous Petrov-Galerkin finite elements for fluid problems , 2014, Comput. Math. Appl..

[21]  Leszek F. Demkowicz,et al.  Analysis of the DPG Method for the Poisson Equation , 2011, SIAM J. Numer. Anal..

[22]  H. K. Moffatt Viscous and resistive eddies near a sharp corner , 1964, Journal of Fluid Mechanics.

[23]  Anders Logg,et al.  Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .

[24]  W. J. Gordon,et al.  Transfinite element methods: Blending-function interpolation over arbitrary curved element domains , 1973 .

[25]  Leszek F. Demkowicz,et al.  A primal DPG method without a first-order reformulation , 2013, Comput. Math. Appl..

[26]  Wolfgang Dahmen,et al.  Adaptivity and variational stabilization for convection-diffusion equations∗ , 2012 .

[27]  Norbert Heuer,et al.  A robust DPG method for convection-dominated diffusion problems II: Adjoint boundary conditions and mesh-dependent test norms , 2014, Comput. Math. Appl..