TESTING FOR A LINEAR MA MODEL AGAINST THRESHOLD MA MODELS

This paper investigates the (conditional) quasi-likelihood ratio test for the threshold in MA models. Under the hypothesis of no threshold, it is shown that the test statistic converges weakly to a function of the centred Gaussian process. Under local alternatives, it is shown that this test has nontrivial asymptotic power. The results are based on a new weak convergence of a linear marked empirical process, which is independently of interest. This paper also gives an invertible expansion of the threshold MA models.

[1]  Michael McAleer,et al.  On Adaptive Estimation in Nonstationary Arma Models with Garch Errors , 2003 .

[2]  Hira L. Koul,et al.  Asymptotics of M-estimators in two-phase linear regression models , 2003 .

[3]  Bruce E. Hansen,et al.  THRESHOLD AUTOREGRESSION WITH A UNIT ROOT , 2001 .

[4]  B. Hansen Sample Splitting and Threshold Estimation , 2000 .

[5]  Wai Keung Li,et al.  TESTING FOR DOUBLE THRESHOLD AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTIC MODEL , 2000 .

[6]  S. Ling On the probabilistic properties of a double threshold ARMA conditional heteroskedastic model , 1999, Journal of Applied Probability.

[7]  Hira L. Koul,et al.  Nonparametric model checks for time series , 1999 .

[8]  Lianfen Qian,et al.  On maximum likelihood estimators for a threshold autoregression 1 1 Research was partly supported by , 1998 .

[9]  R. Tsay Testing and modeling multivariate threshold models , 1998 .

[10]  Kung-Sik Chan,et al.  Limiting properties of the least squares estimator of a continuous threshold autoregressive model , 1998 .

[11]  Jan G. De Gooijer,et al.  On threshold moving‐average models , 1998 .

[12]  Anton Schick,et al.  Efficient estimation in nonlinear autoregressive time-series models , 1997 .

[13]  Wai Keung Li,et al.  On a threshold autoregression with conditional heteroscedastic variances , 1997 .

[14]  H. An,et al.  A note on the ergodicity of non-linear autoregressive model , 1997 .

[15]  W. K. Li,et al.  Testing for threshold autoregression with conditional heteroscedasticity , 1997 .

[16]  Winfried Stute,et al.  Nonparametric model checks for regression , 1997 .

[17]  Bruce E. Hansen,et al.  Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis , 1996 .

[18]  H. An,et al.  The geometrical ergodicity of nonlinear autoregressive models , 1996 .

[19]  D. Andrews Tests for Parameter Instability and Structural Change with Unknown Change Point , 1993 .

[20]  K. Chan,et al.  Consistency and limiting distribution of the least squares estimator of a threshold autoregressive model , 1993 .

[21]  E. Susko,et al.  On strict stationarity and ergodicity of a non-linear ARMA model , 1992, Journal of Applied Probability.

[22]  Richard L. Tweedie,et al.  ON THE EXISTENCE OF STATIONARY THRESHOLD AUTOREGRESSIVE MOVING‐AVERAGE PROCESSES , 1992 .

[23]  An Hong-Zhi,et al.  A Kolmogorov-Smirnov type statistic with application to test for nonlinearity in time series , 1991 .

[24]  Ruey S. Tsay,et al.  On the Ergodicity of Tar(1) Processes , 1991 .

[25]  K. Chan,et al.  Percentage Points of Likelihood Ratio Tests for Threshold Autoregression , 1991 .

[26]  K. Chan,et al.  Testing for threshold autoregression , 1990 .

[27]  Kung-Sik Chan,et al.  On Likelihood Ratio Tests for Threshold Autoregression , 1990 .

[28]  H. Tong Non-linear time series. A dynamical system approach , 1990 .

[29]  Howell Tong,et al.  Non-Linear Time Series , 1990 .

[30]  Ruey S. Tsay,et al.  Testing and Modeling Threshold Autoregressive Processes , 1989 .

[31]  Ruey S. Tsay,et al.  Conditional Heteroscedastic Time Series Models , 1987 .

[32]  H. Tong,et al.  On the use of the deterministic Lyapunov function for the ergodicity of stochastic difference equations , 1985, Advances in Applied Probability.

[33]  Sam Woolford,et al.  A multiple-threshold AR(1) model , 1985, Journal of Applied Probability.

[34]  Paul Waltman,et al.  A Threshold Model , 1974 .

[35]  J. Doob Stochastic processes , 1953 .