TESTING FOR A LINEAR MA MODEL AGAINST THRESHOLD MA MODELS
暂无分享,去创建一个
[1] Michael McAleer,et al. On Adaptive Estimation in Nonstationary Arma Models with Garch Errors , 2003 .
[2] Hira L. Koul,et al. Asymptotics of M-estimators in two-phase linear regression models , 2003 .
[3] Bruce E. Hansen,et al. THRESHOLD AUTOREGRESSION WITH A UNIT ROOT , 2001 .
[4] B. Hansen. Sample Splitting and Threshold Estimation , 2000 .
[5] Wai Keung Li,et al. TESTING FOR DOUBLE THRESHOLD AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTIC MODEL , 2000 .
[6] S. Ling. On the probabilistic properties of a double threshold ARMA conditional heteroskedastic model , 1999, Journal of Applied Probability.
[7] Hira L. Koul,et al. Nonparametric model checks for time series , 1999 .
[8] Lianfen Qian,et al. On maximum likelihood estimators for a threshold autoregression 1 1 Research was partly supported by , 1998 .
[9] R. Tsay. Testing and modeling multivariate threshold models , 1998 .
[10] Kung-Sik Chan,et al. Limiting properties of the least squares estimator of a continuous threshold autoregressive model , 1998 .
[11] Jan G. De Gooijer,et al. On threshold moving‐average models , 1998 .
[12] Anton Schick,et al. Efficient estimation in nonlinear autoregressive time-series models , 1997 .
[13] Wai Keung Li,et al. On a threshold autoregression with conditional heteroscedastic variances , 1997 .
[14] H. An,et al. A note on the ergodicity of non-linear autoregressive model , 1997 .
[15] W. K. Li,et al. Testing for threshold autoregression with conditional heteroscedasticity , 1997 .
[16] Winfried Stute,et al. Nonparametric model checks for regression , 1997 .
[17] Bruce E. Hansen,et al. Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis , 1996 .
[18] H. An,et al. The geometrical ergodicity of nonlinear autoregressive models , 1996 .
[19] D. Andrews. Tests for Parameter Instability and Structural Change with Unknown Change Point , 1993 .
[20] K. Chan,et al. Consistency and limiting distribution of the least squares estimator of a threshold autoregressive model , 1993 .
[21] E. Susko,et al. On strict stationarity and ergodicity of a non-linear ARMA model , 1992, Journal of Applied Probability.
[22] Richard L. Tweedie,et al. ON THE EXISTENCE OF STATIONARY THRESHOLD AUTOREGRESSIVE MOVING‐AVERAGE PROCESSES , 1992 .
[23] An Hong-Zhi,et al. A Kolmogorov-Smirnov type statistic with application to test for nonlinearity in time series , 1991 .
[24] Ruey S. Tsay,et al. On the Ergodicity of Tar(1) Processes , 1991 .
[25] K. Chan,et al. Percentage Points of Likelihood Ratio Tests for Threshold Autoregression , 1991 .
[26] K. Chan,et al. Testing for threshold autoregression , 1990 .
[27] Kung-Sik Chan,et al. On Likelihood Ratio Tests for Threshold Autoregression , 1990 .
[28] H. Tong. Non-linear time series. A dynamical system approach , 1990 .
[29] Howell Tong,et al. Non-Linear Time Series , 1990 .
[30] Ruey S. Tsay,et al. Testing and Modeling Threshold Autoregressive Processes , 1989 .
[31] Ruey S. Tsay,et al. Conditional Heteroscedastic Time Series Models , 1987 .
[32] H. Tong,et al. On the use of the deterministic Lyapunov function for the ergodicity of stochastic difference equations , 1985, Advances in Applied Probability.
[33] Sam Woolford,et al. A multiple-threshold AR(1) model , 1985, Journal of Applied Probability.
[34] Paul Waltman,et al. A Threshold Model , 1974 .
[35] J. Doob. Stochastic processes , 1953 .