Supported planar bilayer formation by vesicle fusion: the interaction of phospholipid vesicles with surfaces and the effect of gramicidin on bilayer properties using atomic force microscopy.

We have used magnetic alternating current mode atomic force microscopy (MAC-AFM) to investigate the formation of supported phospholipid bilayers (SPB) by the method of vesicle fusion. The systems studied were dioleoylphosphatidylcholine (DOPC) on mica and mica modified with 3-aminopropyl-triethoxy-silane (APTES), and DOPC vesicles with gramicidin incorporated on mica and APTES-modified mica. The AFM images reveal three stages of bilayer formation: localized disklike features that are single bilayer footprints of the vesicles, partial continuous coverage, and finally complete bilayer formation. The mechanism of supported phospholipid bilayers formation is the fusion of proximal vesicles, rather than surface disk migration. This mechanism does not appear to be affected by incorporation of gramicidin or by surface modification. Once formed, the bilayer develops circular defects one bilayer deep. These defects grow in size and number until a dynamic equilibrium is reached.

[1]  A. Nelson,et al.  Chronoamperometric Study of Tl(I) Reduction at Gramicidin-Modified Phospholipid-Coated Mercury Electrodes , 1999 .

[2]  D C Richardson,et al.  Looking at proteins: representations, folding, packing, and design. Biophysical Society National Lecture, 1992. , 1992, Biophysical journal.

[3]  G. A. Woolley,et al.  C-terminal amino groups facilitate membrane incorporation of gramicidin derivatives. , 1995, Biochimica et biophysica acta.

[4]  Ronald G. Crystal,et al.  Transfer of Genes to Humans: Early Lessons and Obstacles to Success , 1995, Science.

[5]  A. Nelson,et al.  Continuing Electrochemical Studies of Phospholipid Monolayers of Dioleoyl Phosphatidylcholine at the Mercury−Electrolyte Interface , 1998 .

[6]  N. Thompson,et al.  Surface binding kinetics of prothrombin fragment 1 on planar membranes measured by total internal reflection fluorescence microscopy. , 1992, Biochemistry.

[7]  H. Mcconnell,et al.  Allogeneic stimulation of cytotoxic T cells by supported planar membranes. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[8]  W F Heinz,et al.  Relative microelastic mapping of living cells by atomic force microscopy. , 1998, Biophysical journal.

[9]  J. Nagle,et al.  Structure and interactions of fully hydrated dioleoylphosphatidylcholine bilayers. , 1998, Biophysical journal.

[10]  R. Denoyel,et al.  Adsorption of (.gamma.-Aminopropyl)triethoxysilane on Silica from Aqueous Solution: A Microcalorimetric Study , 1995 .

[11]  Z. Shao,et al.  Gramicidin A aggregation in supported gel state phosphatidylcholine bilayers. , 1996, Biochemistry.

[12]  H. Mcconnell,et al.  Coupling of Size and Shape Equilibration in Lipid Monolayer Domains , 2000 .

[13]  C. le Grimellec,et al.  Imaging of the surface of living cells by low-force contact-mode atomic force microscopy. , 1998, Biophysical journal.

[14]  P. Nollert,et al.  Manipulation and Molecular Resolution of a Phosphatidylcholine-Supported Planar Bilayer by Atomic Force Microscopy , 1998, The Journal of Membrane Biology.

[15]  O. Andersen,et al.  Lipid bilayer electrostatic energy, curvature stress, and assembly of gramicidin channels. , 1997, Biochemistry.

[16]  E. Sackmann,et al.  Phenomenology and kinetics of lipid bilayer spreading on hydrophilic surfaces , 1995 .

[17]  U. Seifert,et al.  Adhesion of Vesicles and Membranes , 1991 .

[18]  L. Tamm,et al.  Binding of proteins to specific target sites in membranes measured by total internal reflection fluorescence microscopy. , 1990, Biochemistry.

[19]  P K Hansma,et al.  Atomic force microscopy of hydrated phosphatidylethanolamine bilayers. , 1991, Biophysical journal.

[20]  I. Reviakine,et al.  Formation of Supported Phospholipid Bilayers from Unilamellar Vesicles Investigated by Atomic Force Microscopy , 2000 .

[21]  M. Klein,et al.  Effects of anesthetics on the structure of a phospholipid bilayer: molecular dynamics investigation of halothane in the hydrated liquid crystal phase of dipalmitoylphosphatidylcholine. , 1998, Biophysical journal.

[22]  S. Lindsay,et al.  Probing molecular ordering at a liquid-solid interface with a magnetically oscillated atomic force microscope , 1998 .

[23]  J. Zasadzinski,et al.  The structure and stability of phospholipid bilayers by atomic force microscopy. , 1995, Biophysical journal.

[24]  G. Schütz,et al.  Free Brownian motion of individual lipid molecules in biomembranes. , 1999, Biophysical journal.

[25]  W. Knoll,et al.  Streptavidin binding to biotinylated lipid layers on solid supports. A neutron reflection and surface plasmon optical study. , 1992, Biophysical journal.

[26]  R. Lal,et al.  Amyloid β Protein-(1–42) Forms Calcium-permeable, Zn2+-sensitive Channel* , 1998, The Journal of Biological Chemistry.

[27]  H. Fuchs,et al.  Specific adhesion of vesicles monitored by scanning force microscopy and quartz crystal microbalance. , 2000, Biophysical journal.

[28]  H. Mcconnell,et al.  Supported phospholipid bilayers. , 1985, Biophysical journal.

[29]  D. Keller,et al.  Atomic force microscopy of supported planar membrane bilayers. , 1991, Biophysical journal.

[30]  M. Stelzle,et al.  Sensitive detection of protein adsorption to supported lipid bilayers by frequency-dependent capacitance measurements and microelectrophoresis. , 1989, Biochimica et biophysica acta.

[31]  L. Tamm,et al.  Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers. , 1992, Biochimica et biophysica acta.

[32]  S. Lindsay,et al.  A magnetically driven oscillating probe microscope for operation in liquids , 1996 .

[33]  J. Ramsden,et al.  Membrane insertion and antibody recognition of a glycosylphosphatidylinositol-anchored protein: an optical study. , 1993, Biochemistry.

[34]  J. Vesenka,et al.  Colloidal gold particles as an incompressible atomic force microscope imaging standard for assessing the compressibility of biomolecules. , 1993, Biophysical journal.

[35]  P. Gervais,et al.  Influence of the shape of phospholipid vesicles on the measurement of their size by photon correlation spectroscopy , 1998, European Biophysics Journal.

[36]  Udo Seifert,et al.  Configurations of fluid membranes and vesicles , 1997 .

[37]  Y. Lyubchenko,et al.  Scanning tunneling microscopy and atomic force microscopy studies of biomaterials at a liquid–solid interface , 1993 .

[38]  Y. Lyubchenko,et al.  Visualization of supercoiled DNA with atomic force microscopy in situ. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[39]  A. Engel,et al.  Adsorption of biological molecules to a solid support for scanning probe microscopy. , 1997, Journal of structural biology.

[40]  Guojun Liu,et al.  Polystyrene-block-poly(2-cinnamoylethyl methacrylate) Nanospheres with Cross-Linked Shells , 1998 .

[41]  I. Gustafson,et al.  Planar lipid bilayers on solid supports from liposomes--factors of importance for kinetics and stability. , 1997, Biochimica et biophysica acta.

[42]  B. Kasemo,et al.  Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance. , 1998, Biophysical journal.

[43]  Paul S. Cremer,et al.  Formation and Spreading of Lipid Bilayers on Planar Glass Supports , 1999 .

[44]  P. Libby,et al.  Analysis of Turbulent Boundary Layers , 1974 .

[45]  E. Sackmann,et al.  Structure of an adsorbed dimyristoylphosphatidylcholine bilayer measured with specular reflection of neutrons. , 1991, Biophysical journal.

[46]  R. Weis,et al.  Supported planar membranes in studies of cell-cell recognition in the immune system. , 1986, Biochimica et biophysica acta.

[47]  Joan M. Redwing,et al.  An optically pumped GaN–AlGaN vertical cavity surface emitting laser , 1996 .

[48]  J. Risbo,et al.  Lag-burst kinetics in phospholipase A(2) hydrolysis of DPPC bilayers visualized by atomic force microscopy. , 1999, Biochimica et biophysica acta.

[49]  P. Nollert,et al.  Lipid vesicle adsorption versus formation of planar bilayers on solid surfaces. , 1995, Biophysical journal.

[50]  Joachim O. Rädler,et al.  Wetting of phospholipid membranes on hydrophilic surfaces - Concepts towards self-healing membranes , 1999 .