Weak Identifiability in Models for Mark-Recapture-Recovery Data

The percentage overlap between prior and posterior distributions is obtained easily from the output of MCMC samplers. A 35% guideline for overlap between univariate marginal prior and posterior distributions has been suggested as an indicator of weak identifiability of a parameter. As long as uniform prior distributions are adopted for all of the model parameters, then the suggested guideline has been found to work well for a range of models of mark-recapture-recovery data, where all the parameters are probabilities. Its use is illustrated on models for ring-recovery data on male mallards, and the Cormack-Jolly-Seber model for capture-recapture data on dippers.

[1]  Aaron M. Ellison,et al.  Bayesian inference in ecology , 2004 .

[2]  Roger Pradel,et al.  Estimation of sex‐specific survival with uncertainty in sex assessment , 2008 .

[3]  Marc Kéry,et al.  Demographic estimation methods for plants with unobservable life‐states , 2005 .

[4]  Byron J. T. Morgan,et al.  Estimation in parameter-redundant models , 1998 .

[5]  David R. Anderson,et al.  Statistical Inference from Band Recovery Data: A Handbook , 1978 .

[6]  Francisco J. Samaniego,et al.  On the Efficacy of Bayesian Inference for Nonidentifiable Models , 1997 .

[7]  Roger Pradel,et al.  ESTIMATING SURVIVAL AND TEMPORARY EMIGRATION IN THE MULTISTATE CAPTURE–RECAPTURE FRAMEWORK , 2004 .

[8]  Byron J. T. Morgan,et al.  Bayesian methods for analysing ringing data , 2002 .

[9]  James S. Clark,et al.  Why environmental scientists are becoming Bayesians , 2004 .

[10]  Sylvia Richardson,et al.  Inference and monitoring convergence , 1995 .

[11]  Richard A. Parker,et al.  WinBUGS for population ecologists: bayesian modeling using markov chain Monte Carlo methods , 2009 .

[12]  A. Gelfand,et al.  Identifiability, Improper Priors, and Gibbs Sampling for Generalized Linear Models , 1999 .

[13]  A. Formann,et al.  Latent Class Model Diagnosis from a Frequentist Point of View , 2003, Biometrics.

[14]  James O. Berger,et al.  The interplay of Bayesian and frequentist analysis , 2004 .

[15]  Olivier Gimenez,et al.  Parameter Redundancy in Multistate Capture‐Recapture Models , 2003 .

[16]  Bradley P. Carlin,et al.  BAYES AND EMPIRICAL BAYES METHODS FOR DATA ANALYSIS , 1996, Stat. Comput..

[17]  Andrew Thomas,et al.  WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility , 2000, Stat. Comput..

[18]  S P Brooks,et al.  On the Bayesian Analysis of Ring‐Recovery Data , 2000, Biometrics.

[19]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[20]  Axel Schmidt,et al.  Nonparametric estimation of the coefficient of overlapping - theory and empirical application , 2006, Comput. Stat. Data Anal..

[21]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[22]  E. A. Catchpole,et al.  On the Near‐Singularity of Models for Animal Recovery Data , 2001, Biometrics.

[23]  Andrew Gelman,et al.  R2WinBUGS: A Package for Running WinBUGS from R , 2005 .

[24]  M. Conroy,et al.  Modeling demographic processes in marked populations , 2009 .

[25]  S. Zeger,et al.  Latent Class Model Diagnosis , 2000, Biometrics.

[26]  B. Rannala Identi(cid:142)ability of Parameters in MCMC Bayesian Inference of Phylogeny , 2002 .

[27]  Byron J. T. Morgan,et al.  Bayesian Animal Survival Estimation , 2000 .

[28]  Byron J. T. Morgan,et al.  Methods for investigating parameter redundancy , 2004 .

[29]  C. Brownie,et al.  The effect on model identifiability of allowing different relocation rates for live and dead animals in the combined analysis of telemetry and recapture data , 2004 .

[30]  Byron J. T. Morgan,et al.  Detecting parameter redundancy , 1997 .

[31]  Kenneth H. Pollock,et al.  Age-dependent tag return models for estimating fishing mortality, natural mortality, and selectivity , 2007 .

[32]  Jean-Dominique Lebreton,et al.  Parameter Identifiability and Model Selection in Capture‐Recapture Models: A Numerical Approach , 1998 .