A bound on the size of separating hash families

The paper provides an upper bound on the size of a (generalized) separating hash family, a notion introduced by Stinson, Wei and Chen. The upper bound generalizes and unifies several previously known bounds which apply in special cases, namely bounds on perfect hash families, frameproof codes, secure frameproof codes and separating hash families of small type.

[1]  Douglas R. Stinson,et al.  Secure frameproof codes, key distribution patterns, group testing algorithms and related structures , 2000 .

[2]  Douglas R. Stinson,et al.  Some Improved Bounds for Secure Frameproof Codes and Related Separating Hash Families , 2008, IEEE Transactions on Information Theory.

[3]  Douglas R. Stinson,et al.  New Bounds for Generalized Separating Hash Families , 2007 .

[4]  Jessica Staddon,et al.  Combinatorial properties of frameproof and traceability codes , 2001, IEEE Trans. Inf. Theory.

[5]  B. M. Fulk MATH , 1992 .

[6]  Noga Alon,et al.  New Bounds on Parent-Identifying Codes: The Case of Multiple Parents , 2004, Combinatorics, Probability and Computing.

[7]  S. Wei Secure Frameproof Codes, Key Distribution Patterns, Group Testing Algorithms and Related Structures , 1997 .

[8]  Simon R. Blackburn,et al.  Optimal Linear Perfect Hash Families , 1998, J. Comb. Theory, Ser. A.

[9]  Douglas R. Stinson,et al.  On generalized separating hash families , 2008, J. Comb. Theory, Ser. A.

[10]  Simon R. Blackburn Frameproof Codes , 2003, SIAM J. Discret. Math..

[11]  Simon R. Blackburn,et al.  Perfect Hash Families: Probabilistic Methods and Explicit Constructions , 2000, J. Comb. Theory, Ser. A.

[12]  Gérard D. Cohen,et al.  A hypergraph approach to the identifying parent property: the case of multiple parents , 2001, Electron. Notes Discret. Math..

[13]  Simon R. Blackburn,et al.  An upper bound on the size of a code with the k-identifiable parent property , 2003, J. Comb. Theory, Ser. A.

[14]  Gérard D. Cohen,et al.  Generalized hashing and parent-identifying codes , 2003, J. Comb. Theory, Ser. A.