Thickness mapping of retinal layers by spectral-domain optical coherence tomography.

PURPOSE To report normal baseline thickness maps for 6 retinal layers generated by segmentation of spectral-domain optical coherence tomography (SD-OCT) images in normal subjects. Intersubject thickness variability and thickness variations in 9 macular sectors were established. DESIGN Prospective cross-sectional study. MATERIALS AND METHODS SD-OCT imaging was performed in 15 normal subjects. Nineteen SD-OCT images were acquired, encompassing a 6 × 5-mm retinal area, centered on the fovea. Each image was analyzed using an automated segmentation algorithm to derive thickness profiles of 6 retinal layers. Thickness data obtained from all scans were combined to generate thickness maps of 6 retinal layers: nerve fiber layer, ganglion cell layer + inner plexiform layer, inner nuclear layer, outer plexiform layer, outer nuclear layer + photoreceptor inner segments, and photoreceptor outer segments. Mean and standard deviation of thickness measurements were calculated in 9 macular sectors and 6 retinal layers. Intersubject and intrasector thickness variations were established based on standard deviation of measurements. RESULTS Minimum and maximum thickness of the nerve fiber layer were observed in the foveal and nasal perifoveal areas, respectively. The largest thickness variation among subjects and intrasector variability were observed in perifoveal areas. Thickness of the ganglion cell layer + inner plexiform layer and intersubject thickness variability were largest in parafoveal areas. The inner nuclear layer thickness was relatively constant in parafoveal and perifoveal areas and intrasector thickness variations were largest in the foveal area. The outer plexiform layer thickness was relatively constant in foveal and parafoveal areas and higher than in perifoveal areas. Intersubject thickness variability in inner nuclear layer and outer plexiform layer was relatively uniform in all macular sectors. The outer nuclear layer + photoreceptor inner segments thickness map displayed maximum thickness in the foveal area and intersubject thickness variability was largest superior to the fovea. Thickness of the photoreceptor outer segments layer, thickness variations among subjects, and intrasector thickness variability were relatively constant. There was a significant correlation between total retinal thickness derived by thickness mapping and SD-OCT commercial software. CONCLUSION Normal thickness maps for 6 retinal layers were generated and thickness variations among subjects and macular areas were assessed. This technique is promising for investigating thickness changes attributable to disease in specific retinal layers and macular areas.

[1]  T. Aleman,et al.  Photoreceptor layer topography in children with leber congenital amaurosis caused by RPE65 mutations. , 2008, Investigative ophthalmology & visual science.

[2]  Wolfgang Drexler,et al.  Ultra-high resolution optical coherence tomography assessment of photoreceptors in retinitis pigmentosa and related diseases. , 2006, American journal of ophthalmology.

[3]  H. Ishikawa,et al.  QUANTIFICATION OF PHOTORECEPTOR LAYER THICKNESS IN NORMAL EYES USING OPTICAL COHERENCE TOMOGRAPHY , 2006, Retina.

[4]  Hiroshi Ishikawa,et al.  Macular segmentation with optical coherence tomography. , 2005, Investigative ophthalmology & visual science.

[5]  Wing-Ho Yung,et al.  Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study. , 2005, Ophthalmology.

[6]  R. Ansari,et al.  Thickness profiles of retinal layers by optical coherence tomography image segmentation. , 2008, American journal of ophthalmology.

[7]  Vikram S Brar,et al.  Comparison of retinal thickness in normal eyes using Stratus and Spectralis optical coherence tomography. , 2010, Investigative ophthalmology & visual science.

[8]  Vikram S Brar,et al.  Normative data for macular thickness by high-definition spectral-domain optical coherence tomography (spectralis). , 2009, American journal of ophthalmology.

[9]  Robert J Zawadzki,et al.  Changes in cellular structures revealed by ultra-high resolution retinal imaging in optic neuropathies. , 2008, Investigative ophthalmology & visual science.

[10]  Naoyuki Maeda,et al.  Three-dimensional profile of macular retinal thickness in normal Japanese eyes. , 2010, Investigative ophthalmology & visual science.

[11]  David Huang,et al.  Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis. , 2006, Ophthalmology.

[12]  J. Duker,et al.  COMPARISON OF SPECTRAL/FOURIER DOMAIN OPTICAL COHERENCE TOMOGRAPHY INSTRUMENTS FOR ASSESSMENT OF NORMAL MACULAR THICKNESS , 2010, Retina.

[13]  William J Feuer,et al.  Comparison of retinal nerve fiber layer measurements using time domain and spectral domain optical coherent tomography. , 2009, Ophthalmology.

[14]  J. Duker,et al.  Normal macular thickness measurements in healthy eyes using Stratus optical coherence tomography. , 2006, Archives of ophthalmology.