CHANGE DETECTION VIA MORPHOLOGICAL COMPARATIVE FILTERS

In this paper we propose the new change detection technique based on morphological comparative filtering. This technique generalizes the morphological image analysis scheme proposed by Pytiev. A new class of comparative filters based on guided contrasting is developed. Comparative filtering based on diffusion morphology is implemented too. The change detection pipeline contains: comparative filtering on image pyramid, calculation of morphological difference map, binarization, extraction of change proposals and testing change proposals using local morphological correlation coefficient. Experimental results demonstrate the applicability of proposed approach.

[1]  John A. Richards,et al.  Thematic mapping from multitemporal image data using the principal components transformation , 1984 .

[2]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[3]  Bryan C. Pijanowski,et al.  Calibrating a neural network‐based urban change model for two metropolitan areas of the Upper Midwest of the United States , 2005, Int. J. Geogr. Inf. Sci..

[4]  Laurence Hubert-Moy,et al.  Object-Oriented Approach and Texture Analysis for Change Detection in Very High Resolution Images , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[5]  Yu. P. Pyt’ev,et al.  Analysis and recognition of piecewise constant texture images , 2006, Pattern Recognition and Image Analysis.

[6]  L. M. Mestetskiy,et al.  Morphological Image Analysis for Computer Vision Applications , 2015 .

[7]  Dongmei Chen,et al.  Change detection from remotely sensed images: From pixel-based to object-based approaches , 2013 .

[8]  M. Kelly,et al.  Individual Object Change Detection for Monitoring the Impact of a Forest Pathogen on a Hardwood Forest , 2009 .

[9]  Daniel Tomowski,et al.  Colour and texture based change detection for urban disaster analysis , 2011, 2011 Joint Urban Remote Sensing Event.

[10]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  D. Roberts,et al.  A comparison of methods for monitoring multitemporal vegetation change using Thematic Mapper imagery , 2002 .

[12]  Xia Li,et al.  Cellular automata for simulating land use changes based on support vector machines , 2008, Comput. Geosci..

[13]  Francesca Bovolo,et al.  A Novel Approach to Unsupervised Change Detection Based on a Semisupervised SVM and a Similarity Measure , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Guy Marchal,et al.  Multimodality image registration by maximization of mutual information , 1997, IEEE Transactions on Medical Imaging.

[15]  Suming Jin,et al.  Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances , 2005 .

[16]  P. Mayaux,et al.  An object-based method for mapping and change analysis in mangrove ecosystems , 2008 .

[17]  G. Hay,et al.  A Multiscale Object-Specific Approach to Digital Change Detection , 2003 .

[18]  Yu. P. Pyt’ev Oblique projectors and relative forms in image morphology , 2013 .

[19]  Steven W. Zucker,et al.  Diffusion Maps and Geometric Harmonics for Automatic Target Recognition (ATR). Volume 2. Appendices , 2007 .

[20]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[21]  S. Yu. Zheltov,et al.  SHAPE-BASED IMAGE MATCHING USING HEAT KERNELS AND DIFFUSION MAPS , 2014 .

[22]  Dengsheng Lu,et al.  Land‐cover binary change detection methods for use in the moist tropical region of the Amazon: a comparative study , 2005 .

[23]  N. Chang,et al.  Seasonal change detection of riparian zones with remote sensing images and genetic programming in a semi-arid watershed. , 2009, Journal of environmental management.

[24]  R. Lunetta,et al.  Land-cover characterization and change detection using multitemporal MODIS NDVI data , 2005, International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, 2005..

[25]  Dong-Chen He,et al.  Automatic change detection of buildings in urban environment from very high spatial resolution images using existing geodatabase and prior knowledge , 2010 .

[26]  Ronald R. Coifman,et al.  Geometries of sensor outputs, inference, and information processing , 2006, SPIE Defense + Commercial Sensing.

[27]  Bala Venkatesh,et al.  Morphological image analysis of transmission systems , 2005 .

[28]  Amir Averbuch,et al.  Objects based change detection in a pair of gray-level images , 2005, Pattern Recognit..

[29]  C. Tucker,et al.  A comparative study of NOAA–AVHRR derived drought indices using change vector analysis , 2006 .

[30]  Jian Sun,et al.  Guided Image Filtering , 2010, ECCV.

[31]  Philip J. Howarth,et al.  Procedures for change detection using Landsat digital data , 1981 .

[32]  John R. Jensen,et al.  A change detection model based on neighborhood correlation image analysis and decision tree classification , 2005 .

[33]  Ashbindu Singh,et al.  Review Article Digital change detection techniques using remotely-sensed data , 1989 .

[34]  R. Reulke,et al.  Remote Sensing and Spatial Information Sciences , 2005 .

[35]  D. Lu,et al.  Change detection techniques , 2004 .

[36]  A. Smith,et al.  Image segmentation scale parameter optimization and land cover classification using the Random Forest algorithm , 2010 .

[37]  S. Zheltov,et al.  GEOMETRICAL CORRELATION AND MATCHING OF 2D IMAGE SHAPES , 2012 .

[38]  Pierre Soille,et al.  Morphological Image Analysis , 1999 .

[39]  Jinsong Deng,et al.  PCA‐based land‐use change detection and analysis using multitemporal and multisensor satellite data , 2008 .

[40]  Qi Zhang,et al.  Rolling Guidance Filter , 2014, ECCV.

[41]  Wei Ji,et al.  Characterizing urban sprawl using multi-stage remote sensing images and landscape metrics , 2006, Comput. Environ. Urban Syst..

[42]  R. Kauth,et al.  The tasselled cap - A graphic description of the spectral-temporal development of agricultural crops as seen by Landsat , 1976 .

[43]  T. Blaschke TOWARDS A FRAMEWORK FOR CHANGE DETECTION BASED ON IMAGE OBJECTS , 2005 .

[44]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[45]  R. C. Maggio,et al.  An analysis of anthropogenic deforestation using logistic regression and GIS , 1990 .

[46]  Chengquan Huang,et al.  Use of a dark object concept and support vector machines to automate forest cover change analysis , 2008 .

[47]  Ammad Ali,et al.  Face Recognition with Local Binary Patterns , 2012 .

[48]  Hichem Sahbi,et al.  Constrained optical flow for aerial image change detection , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[49]  Mikhail Belkin,et al.  Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering , 2001, NIPS.