Recent Developments in Irradiation-Resistant Steels

Advanced fission and future fusion energy will require new high-performance structural alloys with outstanding properties that are sustained under long-term service in ultrasevere environments, including neutron damage producing up to 200 atomic displacements per atom and, for fusion, 2000 appm of He. Following a brief description of irradiation damage and damage resistance, we focus on an emerging class of nanostructured ferritic alloys (NFAs) that show promise for meeting these challenges. NFAs contain an ultrahigh density of Y-Ti-O-enriched dispersion-strengthening nanofeatures (NFs) that, along with fine grains and high dislocation densities, provide remarkably high tensile, creep, and fatigue strength. The NFs are stable under irradiation up to 800°C and trap He in fine-scale bubbles, suppressing void swelling and fast fracture embrittlement at lower temperatures and creep rupture embrittlement at high temperatures. The current state of the development and understanding of NFAs is described, along wi...

[1]  Mychailo B. Toloczko,et al.  Comparison of swelling and irradiation creep behavior of fcc-austenitic and bcc-ferritic/martensitic alloys at high neutron exposure , 2000 .

[2]  B. M. Oliver,et al.  The transport and fate of helium in martensitic steels at fusion relevant He/dpa ratios and dpa rates , 2007 .

[3]  H. Bhadeshia,et al.  Crystallographic texture in mechanically alloyed oxide dispersion-strengthened MA956 and MA957 steels , 1993 .

[4]  T. Okuda,et al.  Development of 9Cr-ODS Martensitic Steel Claddings for Fuel Pins by means of Ferrite to Austenite Phase Transformation , 2002 .

[5]  Takashi Suzuki,et al.  Hardness of 12Cr8Mo ferritic steels irradiated by Ni ions , 1995 .

[6]  Y. Dai,et al.  Tensile properties of ODS-14%Cr ferritic alloy irradiated in a spallation environment , 2009 .

[7]  M. Rieth,et al.  EUROFER 97. Tensile, charpy, creep and structural tests , 2003 .

[8]  G. Odette A model for in-reactor stress rupture of austenitic stainless steels , 1984 .

[9]  T. Okuda,et al.  Dispersion behaviour of oxide particles in mechanically alloyed ODS steel , 1995 .

[10]  R. Klueh,et al.  Development of an Oxide Dispersion Strengthened Reduced-Activation Steel for Fusion Energy , 2000 .

[11]  B. Wilshire,et al.  Deformation and damage processes during creep of Incoloy MA957 , 2004 .

[12]  A. Möslang,et al.  HRTEM study of yttrium oxide particles in ODS steels for fusion reactor application , 2003 .

[13]  Shigeharu Ukai,et al.  Perspective of ODS alloys application in nuclear environments , 2002 .

[14]  Mikhail A. Sokolov,et al.  Influence of Particle Dispersions on the High-Temperature Strength of Ferritic Alloys , 2007 .

[15]  M. Alinger On the formation and stability of nanometer scale precipitates in ferritic alloys during processing and high temperature service , 2004 .

[16]  Farrokh Najmabadi,et al.  A Plan for the Development of Fusion Energy , 2002 .

[17]  T. Inoue,et al.  In-pile creep rupture properties of ODS ferritic steel claddings , 2009 .

[18]  Philippe Spätig,et al.  Microstructure and mechanical properties of two ODS ferritic/martensitic steels , 2002 .

[19]  R. Stoller,et al.  A Comparison of the Relative Importance of Helium and Vacancy Accumulation in Void Nucleation , 1987 .

[20]  T. Okuda,et al.  Tube manufacturing and characterization of oxide dispersion strengthened ferritic steels , 2000 .

[21]  S. Zinkle,et al.  Operating temperature windows for fusion reactor structural materials , 2000 .

[22]  L. Mansur,et al.  Mechanisms of swelling suppression in cold-worked phosphorous-modified Fe-Ni-Cr alloys , 1990 .

[23]  A. Alamo,et al.  Mechanical properties of 9Cr martensitic steels and ODS-FeCr alloys after neutron irradiation at 325 °C up to 42 dpa , 2007 .

[24]  C. Jang,et al.  Embrittlement and hardening during thermal aging of high Cr oxide dispersion strengthened alloys , 2007 .

[25]  M. Mathon,et al.  Assessment of ODS-14%Cr ferritic alloy for high temperature applications , 2004 .

[26]  S. Ukai,et al.  Nano-mesoscopic structure control in 9Cr–ODS ferritic steels , 2007 .

[27]  R. Stoller,et al.  Fracture toughness and tensile properties of nano-structured ferritic steel 12YWT , 2007 .

[28]  Ryuta Kasada,et al.  Evaluation of Helium effects on swelling behavior of oxide dispersion strengthened ferritic steels under ion irradiation , 2007 .

[29]  S. Ohnuki,et al.  Formation of nanoscale complex oxide particles in mechanically alloyed ferritic steel , 2004 .

[30]  H. Trinkaus On the modeling of the high-temperature embrittlement of metals containing helium , 1983 .

[31]  I. Monnet,et al.  Microstructural investigation of the stability under irradiation of oxide dispersion strengthened ferritic steels , 2004 .

[32]  N. Ghoniem,et al.  Nucleation of grain boundary cavities under the combined influence of helium and applied stress , 1987 .

[33]  G. Odette On mechanisms controlling swelling in ferritic and martensitic alloys , 1988 .

[34]  Gary S. Was,et al.  Materials degradation in fission reactors: Lessons learned of relevance to fusion reactor systems , 2007 .

[35]  W. R. Corwin U.S. GENERATION IV REACTOR INTEGRATED MATERIALS TECHNOLOGY PROGRAM , 2006 .

[36]  N. Akasaka,et al.  Void formation and microstructural development in oxide dispersion strengthened ferritic steels during electron-irradiation , 1998 .

[37]  H. Ullmaier The influence of helium on the bulk properties of fusion reactor structural materials , 1984 .

[38]  John P. Shingledecker,et al.  Oxide dispersion-strengthened steels: A comparison of some commercial and experimental alloys , 2005 .

[39]  S. Ukai,et al.  Low cycle fatigue properties of ODS ferritic–martensitic steels at high temperature , 2007 .

[40]  N. Baluc,et al.  Microstructure and Charpy impact properties of 12-14Cr oxide dispersion-strengthened ferritic steels , 2008 .

[41]  P. J. Maziasz,et al.  Overview of microstructural evolution in neutron-irradiated austenitic stainless steels , 1993 .

[42]  Seiichi Watanabe,et al.  Effect of mechanical alloying parameters on irradiation damage in oxide dispersion strengthened ferritic steels , 2000 .

[43]  Joachim Rösler,et al.  A new model-based creep equation for dispersion strengthened materials , 1990 .

[44]  Edward A. Kenik,et al.  Stability of Ferritic MA/ODS Alloys at High Temperatures , 2004, Microscopy and Microanalysis.

[45]  R. Stoller,et al.  Analytical solutions for helium bubble and critical radius parameters using a hard sphere equation of state , 1985 .

[46]  K. Ehrlich,et al.  The development of structural materials for fusion reactors , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[47]  A. Kimura,et al.  Helium cavity formation research on oxide dispersed strengthening (ODS) ferritic steels utilizing dual-ion irradiation facility , 2006 .

[48]  S. Ukai,et al.  Swelling rate versus swelling correlation in 20% cold-worked 316 stainless steels , 2003 .

[49]  A. Kimura,et al.  High Burnup Fuel Cladding Materials R&D for Advanced Nuclear Systems , 2007 .

[50]  C. Capdevila,et al.  Manufacturing and Microstructural Evolution of Mechanuically Alloyed Oxide Dispersion Strengthened Superalloys , 2001 .

[51]  G. Odette,et al.  The transport and fate of helium in nanostructured ferritic alloys at fusion relevant He/dpa ratios and dpa rates , 2007 .

[52]  R. Klueh,et al.  High-Chromium Ferritic and Martensitic Steels for Nuclear Applications , 2001 .

[53]  E. Lucon Mechanical tests on two batches of oxide dispersion strengthened RAFM steel (EUROFER97) , 2002 .

[54]  E. Arzt,et al.  Threshold stresses for dislocation climb over hard particles: The effect of an attractive interaction , 1986 .

[55]  A. Ardell,et al.  Coarsening of grain-boundary precipitates , 1972 .

[56]  G. Odette,et al.  Fission-fusion correlations for swelling and microstructure in stainless steels: Effect of the helium to displacement per atom ratio , 1981 .

[57]  F. Garner,et al.  Irradiation creep of various ferritic alloys irradiated at ∼400°C in the PFR and FFTF reactors , 1998 .

[58]  A. Kimura,et al.  Development of Fuel Clad Materials for High Burn-up Operation of LWR , 2005 .

[59]  Ronald L. Klueh,et al.  Ferritic/martensitic steels for next-generation reactors , 2007 .

[60]  J. Martin,et al.  Micromechanisms in particle-hardened alloys , 1980 .

[61]  K. F. Russell,et al.  Nanometer scale precipitation in ferritic MA/ODS alloy MA957 , 2004 .

[62]  A. Möslang,et al.  Energy-filtered TEM imaging and EELS study of ODS particles and argon-filled cavities in ferritic-martensitic steels. , 2005, Micron.

[63]  D. Gelles,et al.  Irradiation creep and swelling from 400 to 600 °C of the oxide dispersion strengthened ferritic alloy MA957 , 2004 .

[64]  S. Thevuthasan,et al.  The Stability of 9Cr-ODS Oxide Particles Under Heavy-Ion Irradiation , 2005 .

[65]  G. R. Odette,et al.  The development and stability of Y–Ti–O nanoclusters in mechanically alloyed Fe–Cr based ferritic alloys , 2004 .

[66]  M. Harada,et al.  Alloying design of oxide dispersion strengthened ferritic steel for long life FBRs core materials , 1993 .

[67]  A. Kimura,et al.  Heavy-ion irradiation effects on the morphology of complex oxide particles in oxide dispersion strengthened ferritic steels , 2007 .

[68]  Ronald L. Klueh,et al.  Cladding and duct materials for advanced nuclear recycle reactors , 2008 .

[69]  G. Robert Odette,et al.  On the effects of irradiation and helium on the yield stress changes and hardening and non-hardening embrittlement of ∼8Cr tempered martensitic steels : Compilation and analysis of existing data , 2006 .

[70]  Naoyuki Hashimoto,et al.  Tensile and creep properties of an oxide dispersion-strengthened ferritic steel , 2002 .

[71]  C. Cayron,et al.  Microstructural evolution of Y2O3 and MgAl2O4 ODS EUROFER steels during their elaboration by mechanical milling and hot isostatic pressing , 2004 .

[72]  Y. Carlan,et al.  Small Angle Neutron Scattering Study of Irradiated Martensitic Steels: Relation Between Microstructural Evolution and Hardening , 2005 .

[73]  A. Mayorshin,et al.  Oxide Dispersion Strengthened (ODS) Fuel Pins Fabrication for BOR-60 Irradiation Test , 2005 .

[74]  Shigeharu Ukai,et al.  Tube manufacturing trials by different routes in 9CrW-ODS martensitic steels , 2004 .

[75]  G. Odette,et al.  Tensile and fracture toughness properties of MA957: implications to the development of nanocomposited ferritic alloys , 2002 .

[76]  David J. Larson,et al.  Three-dimensional atom probe observation of nanoscale titanium-oxygen clustering in an oxide-dispersion-strengthened Fe-12Cr-3W-0.4Ti + Y2O3 ferritic alloy , 2001 .

[77]  David S. Gelles,et al.  Microstructural examination of commercial ferritic alloys at 200 dpa , 1995 .

[78]  Kazuya Miyahara,et al.  Effect of Ti and W on the Mechanical Properties and Microstructure of 12% Cr Base Mechanical-alloyed Nano-sized ODS Ferritic Alloys , 2003 .

[79]  R. Neu,et al.  Materials for plasma facing components of fusion reactors , 2004 .

[80]  Naoyuki Hashimoto,et al.  Defect and void evolution in oxide dispersion strengthened ferritic steels under 3.2 MeV Fe+ ion irradiation with simultaneous helium injection , 2000 .

[81]  K. F. Russell,et al.  Characterization of precipitates in MA/ODS ferritic alloys , 2006 .

[82]  A. Möslang,et al.  TEM characterization of structure and composition of nanosized ODS particles in reduced activation ferritic martensitic steels , 2004 .

[83]  M. Inoue,et al.  Effects of Grain Morphology and Texture on High Temperature Deformation in Oxide Dispersion Strengthened Ferritic Steels , 1996 .

[84]  A. Kohyama,et al.  Particle size effects in mechanically alloyed 9Cr ODS steel powder , 2007 .

[85]  A. Kimura,et al.  Pre- and post-deformation microstructures of oxide dispersion strengthened ferritic steels , 2007 .

[86]  A. Kimura,et al.  Microstructural changes of neutron irradiated ODS ferritic and martensitic steels , 2004 .

[87]  A. Möslang,et al.  Direct correlation between morphology of (Fe,Cr)23C6 precipitates and impact behavior of ODS steels , 2007 .

[88]  N. Akasaka,et al.  Phase stability of oxide dispersion-strengthened ferritic steels in neutron irradiation , 2002 .

[89]  G. R. Odette,et al.  Modeling microstructural evolution in fusion reactor environments , 1985 .

[90]  G. Odette,et al.  The microstructure and strength properties of MA957 nanostructured ferritic alloy joints produced by friction stir and electro-spark deposition welding , 2007 .

[91]  Michael L. Corradini MULTIPHASE FLOW IN EX-VESSEL COOLABILITY: DEVELOPMENT OF AN INNOVATIVE CONCEPT , 2006 .

[92]  Donald R. Olander,et al.  Fundamental Aspects of Nuclear Reactor Fuel Elements , 1976 .

[93]  Steven J. Zinkle,et al.  Advanced materials for fusion technology , 2005 .

[94]  Edward A. Kenik,et al.  Atom probe tomography of nanoscale particles in ODS ferritic alloys , 2003 .

[95]  Steven J. Zinkle,et al.  Critical questions in materials science and engineering for successful development of fusion power , 2007 .

[96]  S. Ukai,et al.  Nano-structure control in ODS martensitic steels by means of selecting titanium and oxygen contents , 2005 .

[97]  H. Matsui,et al.  High resistance to helium embrittlement in reduced activation martensitic steels , 2002 .

[98]  N. Akasaka,et al.  Microstructural development of a heavily neutron-irradiated ODS ferritic steel (MA957) at elevated temperature , 2007 .

[99]  M. Harada,et al.  Tube manufacturing and mechanical properties of oxide dispersion strengthened ferritic steel , 1993 .

[100]  G. Odette,et al.  TEM examination of microstructural evolution during processing of 14CrYWTi nanostructured ferritic alloys , 2004 .

[101]  T. Okuda,et al.  Development of Oxide Dispersion Strengthened Ferritic Steels for FBR Core Application, (I). Improvement of Mechanical Properties by Recrystallization Processing.:Improvement of Mechanical Properties by Recrystallization Processing , 1997 .

[102]  G. Odette,et al.  Effects of consolidation temperature, strength and microstructure on fracture toughness of nanostructured ferritic alloys , 2007 .

[103]  Roger E. Stoller,et al.  A Composite Model of Microstructural Evolution in Austenitic Stainless Steel Under Fast Neutron Irradiation , 1987 .

[104]  A. Kimura,et al.  Effects of neutron irradiation on the tensile properties of high-Cr oxide dispersion strengthened ferritic steels , 2007 .

[105]  E. Diegele,et al.  Present development status of EUROFER and ODS-EUROFER for application in blanket concepts , 2005 .

[106]  A. R. Jones,et al.  Origin of porosity in oxide-dispersion-strengthened alloys produced by mechanical alloying , 2002 .

[107]  A. Möslang,et al.  Mechanical and microstructural properties of a hipped RAFM ODS-steel , 2002 .

[108]  M. Seki,et al.  Pressurized resistance welding technology development in 9Cr-ODS martensitic steels , 2004 .

[109]  G. Odette,et al.  A creep fracture model for irradiated and helium injected austenitic stainless steels , 1981 .

[110]  M. L. Hamilton,et al.  Fabrication technological development of the oxide dispersion strengthened alloy MA957 for fast reactor applications , 2000 .

[111]  Shigeharu Ukai,et al.  Nano-mesoscopic structural characterization of 9Cr-ODS martensitic steel for improving creep strength , 2007 .

[112]  N. Baluc,et al.  Thermal creep behaviour of the EUROFER 97 RAFM steel and two European ODS EUROFER 97 steels , 2005 .

[113]  Hideharu Nakashima,et al.  Characterization of High Temperature Creep Properties in Recrystallized 12Cr-ODS Ferritic Steel Claddings , 2002 .

[114]  M. J. Luton,et al.  Diffusionally modified dislocation-particle elastic interactions , 1984 .

[115]  Masanori Yamazaki,et al.  Superior Charpy impact properties of ODS ferritic steel irradiated in JOYO , 1998 .

[116]  S. Ohnuki,et al.  Nano-oxide particle stability of 9-12Cr grain morphology modified ODS steels under neutron irradiation , 2004 .

[117]  Naoyuki Hashimoto,et al.  New nano-particle-strengthened ferritic/martensitic steels by conventional thermo-mechanical treatment , 2007 .

[118]  Shigeharu Ukai,et al.  R&D of oxide dispersion strengthened ferritic martensitic steels for FBR , 1998 .

[119]  A. Kimura,et al.  Ring-tensile properties of irradiated oxide dispersion strengthened ferritic/martensitic steel claddings , 2004 .

[120]  F. C. Monkman An Empirical Relationship between Rupture Life and Minimum Creep Rate in Creep Rupture Tests , 1956 .

[121]  S. Ukai,et al.  Preliminary Tube Manufacturing of Oxide Dispersion Strengthened Ferritic Steels with Recrystallized Structure , 1999 .

[122]  Shigeharu Ukai,et al.  Development of oxide dispersion strengthened steels for FBR core application, (II). Morphology improvement by martensite transformation , 1998 .

[123]  Akira Kohyama,et al.  Microstructural evolution during creep of 9Cr-ODS steels , 2006 .

[124]  Michael F. Ashby,et al.  Intergranular fracture during power-law creep , 1979 .

[125]  J. Bottcher,et al.  ODS Steel Clad MOX Fuel-Pin Fabrication and Irradiation Performance in EBR-II , 2002 .

[126]  J. Lee,et al.  A critical stress-critical area statistical model of the Kjc(T) curve for MA957 in the cleavage transition , 2007 .