The Histone Deacetylase Inhibitor Suberoylanilide Hydroxamic Acid Induces Apoptosis via Induction of 15-Lipoxygenase-1 in Colorectal Cancer Cells

Histone deacetylases (HDACs) mediate changes in nucleosome conformation and are important in the regulation of gene expression. HDACs are involved in cell cycle progression and differentiation, and their deregulation is associated with several cancers. HDAC inhibitors have emerged recently as promising chemotherapeutic agents. One such agent, suberoylanilide hydroxamic acid, is a potent inhibitor of HDACs that causes growth arrest, differentiation, and/or apoptosis of many tumor types in vitro and in vivo. Because of its low toxicity, suberoylanilide hydroxamic acid is currently in clinical trials for the treatment of cancer. HDAC inhibitors induce the expression of <2% of genes in cultured cells. In this study, we show that low micromolar concentrations of suberoylanilide hydroxamic acid induce the expression of 15-lipoxygenase-1 in human colorectal cancer cells. The expression of 15-lipoxygenase-1 correlates with suberoylanilide hydroxamic acid-induced increase in 13-S-hydroxyoctadecadienoic acid levels, growth inhibition, differentiation, and apoptosis observed with these cells. Furthermore, specific inhibition of 15-lipoxygenase-1 significantly reduced the suberoylanilide hydroxamic acid-induced effects. These novel findings are the first demonstration of a mechanistic link between the induction of 15-lipoxygenase-1 by a HDAC inhibitor and apoptosis in cancer cells. This result has important implications for the study of suberoylanilide hydroxamic acid and other HDAC inhibitors in the prevention and therapy of colorectal cancer and supports future investigations of the mechanisms by which HDAC inhibitors up-regulate 15-lipoxygenase-1.

[1]  L. Schwartz,et al.  Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. , 2003, Clinical cancer research : an official journal of the American Association for Cancer Research.

[2]  P. Marks,et al.  Histone deacetylase inhibitors: from target to clinical trials , 2002, Expert opinion on investigational drugs.

[3]  T. Eling,et al.  Opposing Effects of 15-Lipoxygenase-1 and -2 Metabolites on MAPK Signaling in Prostate , 2002, The Journal of Biological Chemistry.

[4]  S. Lippman,et al.  GATA-6 transcriptional regulation of 15-lipoxygenase-1 during NSAID-induced apoptosis in colorectal cancer cells. , 2002, Cancer research.

[5]  P. Marks,et al.  Histone deacetylases and cancer: causes and therapies , 2001, Nature Reviews Cancer.

[6]  N. Rosen,et al.  The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces differentiation of human breast cancer cells. , 2001, Cancer research.

[7]  P. Pandolfi,et al.  Histone deacetylase inhibitors induce remission in transgenic models of therapy-resistant acute promyelocytic leukemia. , 2001, The Journal of clinical investigation.

[8]  T. Eling,et al.  15-Lipoxygenase-1 Metabolites Down-regulate Peroxisome Proliferator-activated Receptor γ via the MAPK Signaling Pathway* , 2001, The Journal of Biological Chemistry.

[9]  C. Cordon-Cardo,et al.  Inhibition of transformed cell growth and induction of cellular differentiation by pyroxamide, an inhibitor of histone deacetylase. , 2001, Clinical cancer research : an official journal of the American Association for Cancer Research.

[10]  R A Rifkind,et al.  Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. , 2000, Cancer research.

[11]  P. Marks,et al.  Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[12]  P. Marks,et al.  Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. , 2000, Journal of the National Cancer Institute.

[13]  S. Lippman,et al.  15-LOX-1: a novel molecular target of nonsteroidal anti-inflammatory drug-induced apoptosis in colorectal cancer cells. , 2000, Journal of the National Cancer Institute.

[14]  U. Kelavkar,et al.  A GATA binding site is involved in the regulation of 15‐lipoxygenase‐1 expression in human colorectal carcinoma cell line, Caco‐2 , 2000, FEBS letters.

[15]  P. Marks,et al.  Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors , 1999, Nature.

[16]  D. Fairlie,et al.  Anti-tumour activity in vitro and in vivo of selective differentiating agents containing hydroxamate , 1999, British Journal of Cancer.

[17]  T. Kouzarides Histone acetylases and deacetylases in cell proliferation. , 1999, Current opinion in genetics & development.

[18]  H. Kamitani,et al.  Expression of 15-Lipoxygenase by Human Colorectal Carcinoma Caco-2 Cells during Apoptosis and Cell Differentiation* , 1998, The Journal of Biological Chemistry.

[19]  P. Marks,et al.  A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[20]  R. James,et al.  Induction of caspase-3 protease activity and apoptosis by butyrate and trichostatin A (inhibitors of histone deacetylase): dependence on protein synthesis and synergy with a mitochondrial/cytochrome c-dependent pathway. , 1997, Cancer research.

[21]  R A Rifkind,et al.  Second generation hybrid polar compounds are potent inducers of transformed cell differentiation. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[22]  C. Van Lint,et al.  The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation. , 1996, Gene expression.