Counting asymmetric weighted pyramids in non-decreasing Dyck paths

A Dyck path is non-decreasing if the y-coordinates of its valleys form a non-decreasing sequence. A pyramid is asymmetric if the valleys determining the maximal pyramid are at distinct levels. In this paper we count non-decreasing Dyck paths having asymmetric pyramids of a fixed height at a fixed level in the path. These paths are counted using generating functions (by the symbolic method) and recurrence relations. We parameterize the results found here using Riordan arrays. We have found some relations between the asymmetric pyramids with the p-ascent sequences, the asymmetric Delannoy paths, the q-Catalan numbers, and the Fibonacci polynomials. ISSN: 2202-3518 c ©The author(s). Released under the CC BY 4.0 International License R. FLÓREZ ET AL. /AUSTRALAS. J. COMBIN. 79 (1) (2021), 123–140 124

[1]  Robert A. Sulanke,et al.  OBJECTS COUNTED BY THE CENTRAL DELANNOY NUMBERS , 2003 .

[2]  Sergi Elizalde Symmetric peaks and symmetric valleys in Dyck paths , 2021, Discret. Math..

[3]  D. G. Rogers,et al.  Pascal triangles, Catalan numbers and renewal arrays , 1978, Discret. Math..

[4]  M. Hirschhorn,et al.  Calkin's binomial identity , 1996, Discret. Math..

[5]  Alberto Del Lungo,et al.  Nondecreasing Dyck paths and q-Fibonacci numbers , 1997, Discret. Math..

[6]  Gábor Hetyei Central Delannoy Numbers and Balanced Cohen-Macaulay Complexes , 2006 .

[7]  José L. Ramírez,et al.  Enumerating symmetric and asymmetric peaks in Dyck paths , 2020, Discret. Math..

[8]  Rigoberto Flórez,et al.  Enumerating several aspects of non-decreasing Dyck paths , 2019, Discret. Math..

[9]  L. Carlitz,et al.  Two element lattice permutation numbers and their $q$-generalization , 1964 .

[10]  Éva Czabarka,et al.  Some Enumerations on Non-Decreasing Dyck Paths , 2015, Electron. J. Comb..

[11]  José L. Ramírez,et al.  Some enumerations on non-decreasing Motzkin paths , 2018, Australas. J Comb..

[12]  Samir Guglani,et al.  LINGUISTIC COMPETENCE AND PSYCHOPATHOLOGY : A CROSS-CULTURAL MODEL , 1982, Indian journal of psychiatry.

[14]  Louis W. Shapiro,et al.  The Riordan group , 1991, Discret. Appl. Math..

[15]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[16]  Éva Czabarka,et al.  Enumerations of peaks and valleys on non-decreasing Dyck paths , 2018, Discret. Math..

[17]  Renzo Sprugnoli,et al.  On Some Alternative Characterizations of Riordan Arrays , 1997, Canadian Journal of Mathematics.

[18]  Sergi Elizalde,et al.  Enumerating symmetric peaks in non-decreasing Dyck paths , 2021 .

[19]  Sergey Kitaev,et al.  (2+2)-free Posets, Ascent Sequences and Pattern Avoiding Permutations , 2008, J. Comb. Theory, Ser. A.

[20]  Helmut Prodinger,et al.  A bijection between directed column-convex polyominoes and ordered trees of height at most three , 2003, Theor. Comput. Sci..

[21]  Renzo Sprugnoli,et al.  Sequence characterization of Riordan arrays , 2009, Discret. Math..