Multi-Objective Particle Swarm Optimization Algorithms - A Leader Selection Overview

Multi Objective Optimization (MOO) problem involves simultaneous minimization or maximization of many objective functions. Various MOO algorithms have been introduced to solve the MOO problem. Traditional gradient-based techniques are one of the methods used to solve MOO problems. However, in the traditional gradient-based technique only one solution is generated. Thus, an alternative approach such as Particle Swarm Optimization (PSO), which able to produce a number of possible solutions are highly desirable. In PSO, particles search the optimum solution under the influence of a better solution known as leader. This leader facilitates cooperation between all particles. However, this strategy to select the leader has to be changed when it is used for MOO problems. This paper presents an overview of the multi-objective PSO algorithms, which emphasize on the leader selection. In addition, the description of PSO and multi-objective optimization problems are also provided.

[1]  Richard C. Chapman,et al.  Application of Particle Swarm to Multiobjective Optimization , 1999 .

[2]  W. Renhart,et al.  Pareto optimality and particle swarm optimization , 2004, IEEE Transactions on Magnetics.

[3]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[4]  Carlos A. Coello Coello,et al.  A proposal to use stripes to maintain diversity in a multi-objective particle swarm optimizer , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[5]  Tapabrata Ray,et al.  A Swarm Metaphor for Multiobjective Design Optimization , 2002 .

[6]  R. Lyndon While,et al.  A Scalable Multi-objective Test Problem Toolkit , 2005, EMO.

[7]  赵波,et al.  Multiple objective particle swarm optimization technique for economic load dispatch , 2005 .

[8]  Carlos A. Coello Coello,et al.  Multi-Objective Particle Swarm Optimizers: An Experimental Comparison , 2009, EMO.

[9]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[10]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[11]  Konstantinos E. Parsopoulos,et al.  MULTIOBJECTIVE OPTIMIZATION USING PARALLEL VECTOR EVALUATED PARTICLE SWARM OPTIMIZATION , 2003 .

[12]  Dimitris K. Tasoulis,et al.  Vector evaluated differential evolution for multiobjective optimization , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[13]  J. van Leeuwen,et al.  Genetic and Evolutionary Computation — GECCO 2003 , 2003, Lecture Notes in Computer Science.

[14]  Xiaodong Li,et al.  A Non-dominated Sorting Particle Swarm Optimizer for Multiobjective Optimization , 2003, GECCO.

[15]  Jonathan E. Rowe,et al.  Particle swarm optimization and fitness sharing to solve multi-objective optimization problems , 2005, 2005 IEEE Congress on Evolutionary Computation.

[16]  Yaochu Jin,et al.  Dynamic Weighted Aggregation for evolutionary multi-objective optimization: why does it work and how? , 2001 .

[17]  Kalyanmoy Deb,et al.  Real-coded Genetic Algorithms with Simulated Binary Crossover: Studies on Multimodal and Multiobjective Problems , 1995, Complex Syst..

[18]  Prospero C. Naval,et al.  An effective use of crowding distance in multiobjective particle swarm optimization , 2005, GECCO '05.

[19]  Shu-Kai S. Fan,et al.  A new multi-objective particle swarm optimizer using empirical movement and diversified search strategies , 2015 .

[20]  Xiaodong Li,et al.  Better Spread and Convergence: Particle Swarm Multiobjective Optimization Using the Maximin Fitness Function , 2004, GECCO.

[21]  Abdullah Al Mamun,et al.  An evolutionary artificial immune system for multi-objective optimization , 2008, Eur. J. Oper. Res..

[22]  Minh-Trien Pham,et al.  Multi-Guider and Cross-Searching Approach in Multi-Objective Particle Swarm Optimization for Electromagnetic Problems , 2012, IEEE Transactions on Magnetics.

[23]  Jonathan E. Fieldsend,et al.  Full Elite Sets for Multi-Objective Optimisation , 2002 .

[24]  M.N. Vrahatis,et al.  Particle swarm optimizers for Pareto optimization with enhanced archiving techniques , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[25]  Mohammad Ali Abido,et al.  Multiobjective particle swarm optimization with nondominated local and global sets , 2010, Natural Computing.

[26]  José A. Moreno-Pérez,et al.  Improved Dynamic Lexicographic Ordering for Multi-Objective Optimisation , 2010, PPSN.

[27]  Mazdak Shokrian,et al.  Application of a multi objective multi-leader particle swarm optimization algorithm on NLP and MINLP problems , 2014, Comput. Chem. Eng..

[28]  J. D. Schaffer,et al.  Some experiments in machine learning using vector evaluated genetic algorithms (artificial intelligence, optimization, adaptation, pattern recognition) , 1984 .

[29]  Russell C. Eberhart,et al.  Particle swarm with extended memory for multiobjective optimization , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[30]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[31]  Wenchao Yang,et al.  An Adaptive Mutated Multi-objective Particle Swarm Optimization with an Entropy-based Density Assessment Scheme ⋆ , 2013 .

[32]  Jonathan E. Fieldsend,et al.  A Multi-Objective Algorithm based upon Particle Swarm Optimisation, an Efficient Data Structure and , 2002 .

[33]  C. Coello,et al.  Improving PSO-based Multi-Objective Optimization using Crowding , Mutation and �-Dominance , 2005 .

[34]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[35]  Dario Landa-Silva,et al.  Dynamic Lexicographic Approach for Heuristic Multi-objective Optimization , 2009 .

[36]  Andries Petrus Engelbrecht,et al.  Hybridizing PSO and DE for improved vector evaluated multi-objective optimization , 2009, 2009 IEEE Congress on Evolutionary Computation.

[37]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[38]  Dario Landa-Silva,et al.  Improved dynamic lexicographic ordering for multi-objective optimisation , 2010, PPSN 2010.

[39]  Hung-Tat Tsui,et al.  Autonomous agent response learning by a multi-species particle swarm optimization , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[40]  Shu-Kai S. Fan,et al.  A parallel particle swarm optimization algorithm for multi-objective optimization problems , 2009 .

[41]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[42]  Daniel Merkle,et al.  A New Multi-objective Particle Swarm Optimization Algorithm Using Clustering Applied to Automated Docking , 2005, Hybrid Metaheuristics.

[43]  Tapabrata Ray,et al.  An Evolutionary Algorithm for Constrained Optimization , 2000, GECCO.

[44]  Jürgen Teich,et al.  Covering Pareto-optimal fronts by subswarms in multi-objective particle swarm optimization , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[45]  Jürgen Teich,et al.  Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO) , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[46]  Russell C. Eberhart,et al.  Multiobjective optimization using dynamic neighborhood particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[47]  M. N. Vrahatis,et al.  Particle swarm optimization method in multiobjective problems , 2002, SAC '02.

[48]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[49]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[50]  Kalyanmoy Deb,et al.  Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems , 1999, Evolutionary Computation.

[51]  Richard Balling,et al.  The Maximin Fitness Function; Multi-objective City and Regional Planning , 2003, EMO.

[52]  R. Lyndon While,et al.  A review of multiobjective test problems and a scalable test problem toolkit , 2006, IEEE Transactions on Evolutionary Computation.

[53]  椹木 義一,et al.  Theory of multiobjective optimization , 1985 .

[54]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[55]  Jonathan E. Fieldsend,et al.  A MOPSO Algorithm Based Exclusively on Pareto Dominance Concepts , 2005, EMO.

[56]  Cao Yijia,et al.  Multiple objective particle swarm optimization technique for economic load dispatch , 2005 .

[57]  C.A. Coello Coello,et al.  MOPSO: a proposal for multiple objective particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[58]  J. Teich,et al.  The role of /spl epsi/-dominance in multi objective particle swarm optimization methods , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[59]  Jonathan E. Fieldsend,et al.  Using unconstrained elite archives for multiobjective optimization , 2003, IEEE Trans. Evol. Comput..

[60]  Carlos A. Coello Coello,et al.  Using Clustering Techniques to Improve the Performance of a Multi-objective Particle Swarm Optimizer , 2004, GECCO.

[61]  Shiyou Yang,et al.  A particle swarm optimization-based method for multiobjective design optimizations , 2005, IEEE Transactions on Magnetics.