Sol-gel based materials for biomedical applications

Abstract Sol–gel chemistry offers a flexible approach to obtaining a diverse range of materials. It allows differing chemistries to be achieved as well as offering the ability to produce a wide range of nano-/micro-structures. The paper commences with a generalized description of the various sol–gel methods available and how these chemistries control the bulk properties of the end products. Following this, a more detailed description of the biomedical areas where sol–gel materials have been explored and found to hold significant potential. One of the interesting fields that has been developed recently relates to hybrid materials that utilize sol–gel chemistry to achieve unusual composite properties. Another intriguing feature of sol–gels is the unusual morphologies that are achievable at the micro- and nano-scale. Subsequently the ability to control pore chemistry at a number of different length scales and geometries has proven to be a fruitful area of exploitation, that provides excellent bioactivity and attracts cellular responses as well as enables the entrapment of biologically active molecules and their controllable release for therapeutic action. The approaches of fine-tuning surface chemistry and the combination with other nanomaterials have also enabled targeting of specific cell and tissue types for drug delivery with imaging capacity.

[1]  P. Khanna,et al.  Synthesis of nano-particles of anatase-TiO2 and preparation of its optically transparent film in PVA , 2007 .

[2]  H. Hirashima,et al.  Studies on rheological properties of methyltriethoxysilane (MTES) based flexible superhydrophobic silica aerogels , 2009 .

[3]  A. Deptuła,et al.  Preparation of spherical powders of hydroxyapatite by sol-gel process , 1992 .

[4]  D. Avnir,et al.  Recent bio-applications of sol–gel materials , 2006 .

[5]  K. Ariga,et al.  Coordination chemistry and supramolecular chemistry in mesoporous nanospace , 2007 .

[6]  H. Yang,et al.  Recent progress in biomedical applications of titanium dioxide. , 2013, Physical chemistry chemical physics : PCCP.

[7]  A. Oryan,et al.  Role of tissue engineering in tendon reconstructive surgery and regenerative medicine: Current concepts, approaches and concerns , 2012 .

[8]  Julian R Jones,et al.  Bioactive sol-gel foams for tissue repair. , 2002, Journal of biomedical materials research.

[9]  C. Ohtsuki,et al.  Synthesis of Bioactive HEMA—MPS—CaCl2 Hybrid Gels: Effects of Catalysts in the Sol—Gel Processing on Mechanical Properties and in vitro Hydroxyapatite Formation in a Simulated Body Fluid , 2009, Journal of biomaterials applications.

[10]  M. Kakihana,et al.  Synthesis of stoichiometric hydroxyapatite by a Gel route from the aqueous solution of citric and phosphonoacetic acids , 1995 .

[11]  H. Hirashima,et al.  Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor. , 2006, Journal of colloid and interface science.

[12]  M. Vallet‐Regí,et al.  Silicon substituted hydroxyapatites. A method to upgrade calcium phosphate based implants , 2005 .

[13]  Dong Chen,et al.  The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. , 2010, Biomaterials.

[14]  Thommey P. Thomas,et al.  Dendrimer-epidermal growth factor conjugate displays superagonist activity. , 2008, Biomacromolecules.

[15]  L. Hench Sol-gel materials for bioceramic applications , 1997 .

[16]  C. Sanchez,et al.  Chemical modification of metal alkoxides by solvents : a way to control sol-gel chemistry , 1990 .

[17]  David Avnir,et al.  Organic Chemistry within Ceramic Matrixes: Doped Sol-Gel Materials , 1995 .

[18]  J. Brandão-Neto,et al.  THE ESSENTIAL ROLE OF ZINC IN GROWTH , 1995 .

[19]  X. P. Wang,et al.  Electrospun submicron bioactive glass fibers for bone tissue scaffold , 2009, Journal of materials science. Materials in medicine.

[20]  Jing Sun,et al.  Stable aqueous dispersion of ZnO quantum dots with strong blue emission via simple solution route. , 2007, Journal of the American Chemical Society.

[21]  S. Yue,et al.  Bioactive glass scaffolds for bone regeneration and their hierarchical characterisation , 2010, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[22]  L. Hench,et al.  Quantum chemistry of sol-gel silica clusters☆ , 1990 .

[23]  F. Hoffmann,et al.  Silica‐Based Mesoporous Organic—Inorganic Hybrid Materials , 2006 .

[24]  Patrick Couvreur,et al.  Stimuli-responsive nanocarriers for drug delivery. , 2013, Nature materials.

[25]  S. Shi,et al.  The thermal conductivity of carbon nanotubes with defects and intramolecular junctions , 2013 .

[26]  T. Xia,et al.  Toxic Potential of Materials at the Nanolevel , 2006, Science.

[27]  G. Daculsi,et al.  Biphasic calcium phosphates: influence of three synthesis parameters on the HA/beta-TCP ratio. , 2000, Journal of biomedical materials research.

[28]  Jun Wang,et al.  Protein-based nanomedicine platforms for drug delivery. , 2009, Small.

[29]  Zhihui Dai,et al.  Direct electron transfer and enzymatic activity of hemoglobin in a hexagonal mesoporous silica matrix. , 2004, Biosensors & bioelectronics.

[30]  K. Wu,et al.  Controlling Particle Size and Structural Properties of Mesoporous Silica Nanoparticles Using the Taguchi Method , 2011 .

[31]  Q. Huo,et al.  Synthesis of Mesoporous Silica Nanoparticles via Controlled Hydrolysis and Condensation of Silicon Alkoxide , 2009 .

[32]  David L Kaplan,et al.  Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine. , 2009, Seminars in cell & developmental biology.

[33]  R. Simpson,et al.  Use of Epoxides in the Sol−Gel Synthesis of Porous Iron(III) Oxide Monoliths from Fe(III) Salts , 2001 .

[34]  D. Haranath,et al.  Effect of methyltrimethoxysilane as a synthesis component on the hydrophobicity and some physical properties of silica aerogels , 1999 .

[35]  Qianjun He,et al.  Surface Modification−Complexation Strategy for Cisplatin Loading in Mesoporous Nanoparticles , 2010 .

[36]  N K Chaudhury,et al.  Entrapment of biomolecules in sol-gel matrix for applications in biosensors: problems and future prospects. , 2007, Biosensors & bioelectronics.

[37]  A. Araújo,et al.  Optical sensors and biosensors based on sol-gel films. , 2007, Talanta.

[38]  Chung-Yuan Mou,et al.  Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. , 2009, Small.

[39]  K. Kandori,et al.  Effects of citrate ions on the formation of monodispersed cubic hematite particles , 1992 .

[40]  M. Catauro,et al.  TiO2/PCL hybrid materials synthesized via sol-gel technique for biomedical applications. , 2015, Materials science & engineering. C, Materials for biological applications.

[41]  J. Banfield,et al.  Thermodynamic analysis of phase stability of nanocrystalline titania , 1998 .

[42]  S. Radin,et al.  The controlled release of drugs from emulsified, sol gel processed silica microspheres. , 2009, Biomaterials.

[43]  K. Unger,et al.  Synthesis of spherical porous silicas in the micron and submicron size range: challenges and opportunities for miniaturized high-resolution chromatographic and electrokinetic separations. , 2000, Journal of chromatography. A.

[44]  J. Rosenholm,et al.  Drug release from biodegradable silica fibers , 2002 .

[45]  Shinsuke Sando,et al.  A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region. , 2004, Journal of the American Chemical Society.

[46]  X Zhang,et al.  Bone induction by porous glass ceramic made from Bioglass (45S5). , 2001, Journal of biomedical materials research.

[47]  H. Kim,et al.  Effects on Growth and Osteogenic Differentiation of Mesenchymal Stem Cells by the Zinc-Added Sol-Gel Bioactive Glass Granules , 2010, Journal of tissue engineering.

[48]  N. Kostić,et al.  Effects of Encapsulation in Sol−Gel Silica Glass on Esterase Activity, Conformational Stability, and Unfolding of Bovine Carbonic Anhydrase II , 1999 .

[49]  Joseph M. DeSimone,et al.  Strategies in the design of nanoparticles for therapeutic applications , 2010, Nature Reviews Drug Discovery.

[50]  M. Vallet‐Regí,et al.  Static and dynamic in vitro study of a sol-gel glass bioactivity. , 2001, Biomaterials.

[51]  Seung-eon Kim,et al.  Design and preparation of bioactive glasses with hierarchical pore networks. , 2007, Chemical communications.

[52]  M. Catauro,et al.  Biological response of human mesenchymal stromal cells to titanium grade 4 implants coated with PCL/ZrO₂ hybrid materials synthesized by sol-gel route: in vitro evaluation. , 2014, Materials science & engineering. C, Materials for biological applications.

[53]  David Avnir,et al.  Enzymes and Other Proteins Entrapped in Sol-Gel Materials , 1994 .

[54]  Jianlin Shi,et al.  The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses. , 2010, Biomaterials.

[55]  S. Rhee Effect of molecular weight of poly(ε-caprolactone) on interpenetrating network structure, apatite-forming ability, and degradability of poly(ε-caprolactone)/silica nano-hybrid materials , 2003 .

[56]  M. Fröba,et al.  Vitalising porous inorganic silica networks with organic functions--PMOs and related hybrid materials. , 2011, Chemical Society reviews.

[57]  Ajay Kumar Gupta,et al.  Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. , 2005, Biomaterials.

[58]  I. Chen,et al.  Encapsulation of protein molecules in transparent porous silica matrices via an aqueous colloidal sol–gel process , 1999 .

[59]  Michael T. Wilson,et al.  Antibacterial activity of particulate bioglass against supra- and subgingival bacteria. , 2001, Biomaterials.

[60]  Fredrickson,et al.  Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores , 1998, Science.

[61]  E. Verné,et al.  Macroporous bioactive glass-ceramic scaffolds for tissue engineering , 2006, Journal of materials science. Materials in medicine.

[62]  Daxiang Cui,et al.  Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy. , 2011, Biomaterials.

[63]  Wenjun Meng,et al.  Hollow Mesoporous Silica/Poly(l-lysine) Particles for Codelivery of Drug and Gene with Enzyme-Triggered Release Property , 2011 .

[64]  Juan L. Vivero-Escoto,et al.  Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. , 2008, Advanced drug delivery reviews.

[65]  R. P. Thompson,et al.  Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. , 2003, Bone.

[66]  L L Hench,et al.  Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution. , 2001, Journal of biomedical materials research.

[67]  L. Hench,et al.  Surface-modified 3D scaffolds for tissue engineering , 2002, Journal of materials science. Materials in medicine.

[68]  M. Kakihana Invited review “sol-gel” preparation of high temperature superconducting oxides , 1996 .

[69]  Z. Dai,et al.  Photoresponsive liposomal nanohybrid cerasomes. , 2011, Chemical communications.

[70]  S. Radin,et al.  Controlled release of vancomycin from thin sol-gel films on titanium alloy fracture plate material. , 2007, Biomaterials.

[71]  Larry L. Hench,et al.  The story of Bioglass® , 2006, Journal of materials science. Materials in medicine.

[72]  S. Gruner,et al.  Highly aminated mesoporous silica nanoparticles with cubic pore structure. , 2011, Journal of the American Chemical Society.

[73]  Larry L. Hench,et al.  Bonding mechanisms at the interface of ceramic prosthetic materials , 1971 .

[74]  Avelino Corma,et al.  Monodispersed mesoporous silica nanoparticles with very large pores for enhanced adsorption and release of DNA. , 2009, The journal of physical chemistry. B.

[75]  Yingjun Wang,et al.  Effects of hydroxyapatite microparticle morphology on bone mesenchymal stem cell behavior. , 2014, Journal of materials chemistry. B.

[76]  Byung-Soo Kim,et al.  A poly(lactide-co-glycolide)/hydroxyapatite composite scaffold with enhanced osteoconductivity. , 2007, Journal of biomedical materials research. Part A.

[77]  Yufang Zhu,et al.  Magnetic mesoporous bioactive glass scaffolds: preparation, physicochemistry and biological properties. , 2013, Journal of materials chemistry. B.

[78]  Guoping Chen,et al.  Scaffold Design for Tissue Engineering , 2002 .

[79]  Jan J. Heimans,et al.  Neurotoxic Complications of Chemotherapy in Patients with Cancer , 2012, Drugs.

[80]  T. Uysal,et al.  Stimulation of bone formation by dietary boron in an orthopedically expanded suture in rabbits. , 2009, The Angle orthodontist.

[81]  H. Ju,et al.  A conductive ormosil encapsulated with ferrocene conjugate and multiwall carbon nanotubes for biosensing application. , 2006, Biomaterials.

[82]  Lawrence W. Hrubesh,et al.  New sol–gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors , 2001 .

[83]  J. B. Higgins,et al.  A new family of mesoporous molecular sieves prepared with liquid crystal templates , 1992 .

[84]  N. Matsumoto,et al.  Fabrication of dispersible calcium phosphate nanocrystals via a modified Pechini method under non-stoichiometric conditions. , 2014, Materials science & engineering. C, Materials for biological applications.

[85]  Dai Fukumura,et al.  A nanoparticle size series for in vivo fluorescence imaging. , 2010, Angewandte Chemie.

[86]  P. Ducheyne,et al.  Silicon excretion from bioactive glass implanted in rabbit bone. , 2002, Biomaterials.

[87]  A. Clark,et al.  Multilayer Corrosion Films on Bioglass Surfaces , 1974 .

[88]  Lisa C. Klein,et al.  Sol-gel optics: processing and applications , 1994 .

[89]  M. Nagao Physisorption of water on zinc oxide surface , 1971 .

[90]  Hyunmin Kim,et al.  Mechanism of biomineralization of apatite on a sodium silicate glass: TEM-EDX study in vitro , 2001 .

[91]  M. Vallet‐Regí,et al.  Bioactive glass as precursor of designed-architecture scaffolds for tissue engineering. , 2007, Journal of biomedical materials research. Part A.

[92]  T. Coradin,et al.  Sol-Gel Biopolymer/Silica Nanocomposites in Biotechnology , 2006 .

[93]  Melba Navarro,et al.  Cellular response to calcium phosphate glasses with controlled solubility. , 2003, Journal of biomedical materials research. Part A.

[94]  I. Zuhorn,et al.  Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. , 2004, The Biochemical journal.

[95]  A. B. Fuertes,et al.  Synthesis of colloidal silica nanoparticles of a tunable mesopore size and their application to the adsorption of biomolecules. , 2010, Journal of colloid and interface science.

[96]  Donald R. Smith,et al.  General Chemistry, Sampling, Analytical Methods, and Speciation , 2015 .

[97]  M. Álvarez-Pérez,et al.  Synthesis of nanosized carbonated apatite by a modified Pechini method: hydroxyapatite nucleation from a polymeric matrix , 2014, Journal of Sol-Gel Science and Technology.

[98]  Zongxi Li,et al.  Mesoporous silica nanoparticles facilitate delivery of siRNA to shutdown signaling pathways in mammalian cells. , 2010, Small.

[99]  P K Gupta,et al.  Drug targeting in cancer chemotherapy: a clinical perspective. , 1990, Journal of pharmaceutical sciences.

[100]  Richard K. Brow,et al.  Review: the structure of simple phosphate glasses , 2000 .

[101]  O. Richard Hughes,et al.  Ultrastructure processing of advanced ceramics. John D. MacKenzie, Donald R. Ulrich, eds., Wiley‐Interscience New York, 1988, 1013 pp., $95.00 , 1989 .

[102]  Victor S-Y Lin,et al.  Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects. , 2011, ACS nano.

[103]  M. Vallet‐Regí,et al.  MCM-41 Organic Modification as Drug Delivery Rate Regulator , 2003 .

[104]  L. Francis,et al.  In vitro hydroxycarbonate apatite mineralization of CaO-SiO2 sol-gel glasses with a three-dimensionally ordered macroporous structure , 2001 .

[105]  N. Miyata,et al.  Bioactivity and mechanical properties of polydimethylsiloxane (PDMS)–CaO–SiO2 hybrids with different calcium contents , 2002, Journal of materials science. Materials in medicine.

[106]  T. Alford,et al.  Chemical and Structural Evolution of Sol‐Gel‐Derived Hydroxyapatite Thin Films under Rapid Thermal Processing , 1996 .

[107]  Cecilia Sahlgren,et al.  Mesoporous silica nanoparticles as drug delivery systems for targeted inhibition of Notch signaling in cancer. , 2011, Molecular therapy : the journal of the American Society of Gene Therapy.

[108]  Juan L. Vivero-Escoto,et al.  Mesoporous silica nanoparticles for intracellular controlled drug delivery. , 2010, Small.

[109]  Yaping Li,et al.  In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles: effects of particle size and PEGylation. , 2011, Small.

[110]  T. M. Martins,et al.  Synergistic effect between bioactive glass foam and a perfusion bioreactor on osteogenic differentiation of human adipose stem cells. , 2014, Journal of biomedical materials research. Part A.

[111]  Stefaan C De Smedt,et al.  High intracellular iron oxide nanoparticle concentrations affect cellular cytoskeleton and focal adhesion kinase-mediated signaling. , 2010, Small.

[112]  R. W. Douglas,et al.  Reactions of Glasses with Aqueous Solutions , 1967 .

[113]  V. Meretoja,et al.  Development of a Low Temperature Sol-Gel-Derived Titania-Silica Implant Coating , 2010 .

[114]  David N. Reinhoudt,et al.  Design of Fluorescent Materials for Chemical Sensing , 2007 .

[115]  Julian R Jones,et al.  Optimising bioactive glass scaffolds for bone tissue engineering. , 2006, Biomaterials.

[116]  G. Ozin,et al.  Metamorphic materials: Restructuring siliceous mesoporous materials* , 1995 .

[117]  L. Hench,et al.  Bioactive Ceramics , 1988, Annals of the New York Academy of Sciences.

[118]  Peixiang Cai,et al.  A novel amperometric immunosensor based on three-dimensional sol-gel network and nanoparticle self-assemble technique , 2005 .

[119]  E. Merisko-Liversidge,et al.  Drug Nanoparticles: Formulating Poorly Water-Soluble Compounds , 2008, Toxicologic pathology.

[120]  Ick Chan Kwon,et al.  Multifunctional nanoparticles for multimodal imaging and theragnosis. , 2012, Chemical Society reviews.

[121]  M. Vallet‐Regí,et al.  Studies on MCM-41 mesoporous silica for drug delivery: Effect of particle morphology and amine functionalization , 2008 .

[122]  Masayoshi Yamaguchi,et al.  Role of zinc in bone formation and bone resorption , 1998 .

[123]  H. Bowen,et al.  Formation, Packing, and Sintering of Monodisperse TiO2 Powders , 1982 .

[124]  E. Gultepe,et al.  Fibronectin and vitronectin promote human fetal osteoblast cell attachment and proliferation on nanoporous titanium surfaces. , 2013, Journal of biomedical nanotechnology.

[125]  Michael Thorpe,et al.  Continuous deformations in random networks , 1983 .

[126]  I. Kangasniemi,et al.  Silica xerogel as an implantable carrier for controlled drug delivery--evaluation of drug distribution and tissue effects after implantation. , 2000, Biomaterials.

[127]  Victor S-Y Lin,et al.  Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. , 2006, Journal of the American Chemical Society.

[128]  Jean Rouquerol,et al.  Reporting Physisorption Data for Gas/Solid Systems , 2008 .

[129]  Kapil D. Patel,et al.  Biocompatible magnetite nanoparticles with varying silica-coating layer for use in biomedicine: physicochemical and magnetic properties, and cellular compatibility. , 2012, Journal of biomedical materials research. Part A.

[130]  Hyoun‐Ee Kim,et al.  Improvement in biocompatibility of ZrO2-Al2O3 nano-composite by addition of HA. , 2005, Biomaterials.

[131]  John D. Wright,et al.  Sol-Gel Materials , 2000 .

[132]  J. Reddy,et al.  Folate-targeted chemotherapy. , 2004, Advanced drug delivery reviews.

[133]  Bruce Dunn,et al.  Probes of Pore Environment and Molecule-Matrix Interactions in Sol-Gel Materials , 1997 .

[134]  Pier Paolo Di Fiore,et al.  The endocytic matrix , 2010, Nature.

[135]  C. Betzel,et al.  Synthesis of stoichiometric nano crystalline hydroxyapatite by ethanol-based sol–gel technique at low temperature , 2004 .

[136]  A. Góes,et al.  Effects of extracellular calcium concentration on the glutamate release by bioactive glass (BG60S) preincubated osteoblasts , 2009, Biomedical materials.

[137]  L. Ren,et al.  Sol-gel preparation and in vitro deposition of apatite on porous gelatin-siloxane hybrids , 2001 .

[138]  Kanji Tsuru,et al.  Novel approach to fabricate porous gelatin-siloxane hybrids for bone tissue engineering. , 2002, Biomaterials.

[139]  M. Trau,et al.  Organosilica Particles for DNA Screening Applications , 2006, 2006 International Conference on Nanoscience and Nanotechnology.

[140]  김해원 Production and potential of bioactive glass nanofibers as a next-generation biomaterial , 2006 .

[141]  Juan L. Vivero-Escoto,et al.  Mesoporous silica nanoparticles for reducing hemolytic activity towards mammalian red blood cells. , 2009, Small.

[142]  A. Kalampounias IR and Raman spectroscopic studies of sol–gel derived alkaline-earth silicate glasses , 2011 .

[143]  M. Vallet‐Regí,et al.  Influence of pore size of MCM-41 matrices on drug delivery rate , 2004 .

[144]  J. Knowles,et al.  Sol-gel synthesis and structural characterisation of binary TiO2-P2O5 glasses , 2008 .

[145]  Robert Langer,et al.  Controlled‐release of IGF‐I and TGF‐β1 in a photopolymerizing hydrogel for cartilage tissue engineering , 2001, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[146]  Seong-Ho Choi,et al.  Feasibility of three-dimensional macroporous scaffold using calcium phosphate glass and polyurethane sponge , 2006 .

[147]  E. Wagner,et al.  Phosphate‐Dependent Regulation of MGP in Osteoblasts: Role of ERK1/2 and Fra‐1 , 2009, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[148]  X. Ji,et al.  A pH-responsive mesoporous silica nanoparticles-based multi-drug delivery system for overcoming multi-drug resistance. , 2011, Biomaterials.

[149]  F. Babonneau,et al.  17O solution NMR characterization of the preparation of sol-gel derived SiO2/TiO2 and SiO2/ZrO2 glasses , 1997 .

[150]  Galen D. Stucky,et al.  pH Sensing with mesoporous thin films , 2001 .

[151]  Hua Ai,et al.  Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. , 2011, Accounts of chemical research.

[152]  Kamran Kaveh,et al.  Bone grafting and bone graft substitutes , 2010 .

[153]  L L Hench,et al.  Surface-active biomaterials. , 1984, Science.

[154]  SILICA-COPPER OXIDE COMPOSITE THIN FILMS AS SOLAR SELECTIVE COATINGS PREPARED BY DIPPING SOL GEL , 2008 .

[155]  Satyajit Mayor,et al.  Pathways of clathrin-independent endocytosis , 2007, Nature Reviews Molecular Cell Biology.

[156]  D. Brauer,et al.  Effect of TiO2 addition on structure, solubility and crystallisation of phosphate invert glasses for biomedical applications , 2010 .

[157]  Bengt Fadeel,et al.  Toxicology of engineered nanomaterials: focus on biocompatibility, biodistribution and biodegradation. , 2011, Biochimica et biophysica acta.

[158]  Larry L Hench,et al.  Third-Generation Biomedical Materials , 2002, Science.

[159]  G. Seisenbaeva,et al.  New insight in the role of modifying ligands in the sol-gel processing of metal alkoxide precursors: A possibility to approach new classes of materials , 2006 .

[160]  J. Knowles,et al.  New sol–gel synthesis of a (CaO)0.3(Na2O)0.2(P2O5)0.5 bioresorbable glass and its structural characterisation , 2007 .

[161]  T. Asefa,et al.  Mesoporous silica nanoparticles inhibit cellular respiration. , 2008, Nano letters.

[162]  David F. Williams On the mechanisms of biocompatibility. , 2008, Biomaterials.

[163]  K. de Groot Bioceramics consisting of calcium phosphate salts. , 1980, Biomaterials.

[164]  W. Tseng,et al.  Water-based sol-gel synthesis of hydroxyapatite: process development. , 2001, Biomaterials.

[165]  C. Haynes,et al.  Stability of small mesoporous silica nanoparticles in biological media. , 2011, Chemical communications.

[166]  M. Stébé,et al.  Direct One-Step Immobilization of Glucose Oxidase in Well-Ordered Mesostructured Silica Using a Nonionic Fluorinated Surfactant , 2005 .

[167]  Jean-Jacques Legendre,et al.  Vanadium pentoxide gels , 1983 .

[168]  G. S. Wu,et al.  Fabrication and optical properties of TiO2 nanowire arrays made by sol–gel electrophoresis deposition into anodic alumina membranes , 2003 .

[169]  J. Moon,et al.  Facile fabrication of poly(p-phenylene ethynylene)/colloidal silica composite for nucleic acid detection. , 2006, Journal of colloid and interface science.

[170]  Jun Lin,et al.  Functionalized mesoporous silica materials for controlled drug delivery. , 2012, Chemical Society reviews.

[171]  K. Ariga,et al.  Developments in Molecular Recognition and Sensing at Interfaces , 2007, International Journal of Molecular Sciences.

[172]  M. Ferrari Cancer nanotechnology: opportunities and challenges , 2005, Nature Reviews Cancer.

[173]  D. Day,et al.  In Vitro Bioactive Characteristics of Borate‐Based Glasses with Controllable Degradation Behavior , 2007 .

[174]  Warren C W Chan,et al.  Nanoparticle-mediated cellular response is size-dependent. , 2008, Nature nanotechnology.

[175]  M. Reetz,et al.  Efficient Heterogeneous Biocatalysts by Entrapment of Lipases in Hydrophobic Sol–Gel Materials , 1995 .

[176]  D. Brauer,et al.  Influence of sodium content on the properties of bioactive glasses for use in air abrasion , 2013, Biomedical materials.

[177]  Ana B. Descalzo,et al.  A New Approach to Chemosensors for Anions Using MCM‐41 Grafted with Amino Groups , 2002 .

[178]  Z. Su,et al.  Uniform hollow mesoporous silica nanocages for drug delivery in vitro and in vivo for liver cancer therapy , 2011 .

[179]  J. S. Beck,et al.  Effect of surfactant/silica molar ratios on the formation of mesoporous molecular sieves : inorganic mimicry of surfactant liquid-crystal phases and mechanistic implications , 1994 .

[180]  Gao Qing Lu,et al.  Advances in mesoporous molecular sieve MCM-41 , 1996 .

[181]  Taeghwan Hyeon,et al.  Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. , 2008, Angewandte Chemie.

[182]  Jianhua Yu,et al.  Facile Synthesis of Single‐Phase TiO2 Nanocrystals with High Photocatalytic Performance , 2011 .

[183]  V Vidyashree Nandini,et al.  Alginate impressions: A practical perspective , 2008, Journal of conservative dentistry : JCD.

[184]  A. V. Rao,et al.  Synthesis and Characterization of Hydrophobic TMES/TEOS Based Silica Aerogels , 2003 .

[185]  Jinho Park,et al.  Targeting Strategies for Multifunctional Nanoparticles in Cancer Imaging and Therapy , 2012, Theranostics.

[186]  M. P. Pechini METHOD OF PREPARING iDEAD AND ALKALINE EARTH TITANATES AND NIOBATES AND COATING METHOD USING THE SAME , 2017 .

[187]  Brian G. Trewyn,et al.  Biocompatible mesoporous silica nanoparticles with different morphologies for animal cell membrane penetration , 2008 .

[188]  A. Lu,et al.  Magnetic nanoparticles: synthesis, protection, functionalization, and application. , 2007, Angewandte Chemie.

[189]  I. Farooq,et al.  A review of the effect of various ions on the properties and the clinical applications of novel bioactive glasses in medicine and dentistry. , 2014, The Saudi dental journal.

[190]  Yong-Min Huh,et al.  Nanomaterials for theranostics: recent advances and future challenges. , 2015, Chemical reviews.

[191]  Jing Wang,et al.  Mesoporous Silica‐Coated Gold Nanorods as a Light‐Mediated Multifunctional Theranostic Platform for Cancer Treatment , 2012, Advanced materials.

[192]  Larry L. Hench,et al.  Bioceramics: From Concept to Clinic , 1991 .

[193]  A. Safavi,et al.  Modification of chemical performance of dopants in xerogel films with entrapped ionic liquid , 2007 .

[194]  Shipu Li,et al.  Synthesis and sintering of nanocrystalline hydroxyapatite powders by citric acid sol–gel combustion method , 2004 .

[195]  D. Haddow,et al.  Sol-Gel Derived Calcium Phosphate Coatings for Biomedical Applications , 1998 .

[196]  A. Capobianco,et al.  Notch signalling in solid tumours: a little bit of everything but not all the time , 2011, Nature Reviews Cancer.

[197]  X. F. Chen,et al.  The evaluation of degradability of melt and sol-gel derived bioglass® in-vitro , 1997 .

[198]  W. Bonfield,et al.  Chemical characterization of silicon-substituted hydroxyapatite. , 1999, Journal of biomedical materials research.

[199]  P. Marie,et al.  Long-term treatment with strontium ranelate increases vertebral bone mass without deleterious effect in mice. , 2002, Metabolism: clinical and experimental.

[200]  V. Young,et al.  New complexes of thriethanolamine (Tea): Novel structural features of [Y(TEA)2](ClO4)3·3C5H5N and [Cd(TEA)2](NO3)2 , 1995 .

[201]  A. Ślósarczyk,et al.  Calcium Phosphate Materials Prepared from Precipitates with Various Calcium:Phosphorus Molar Ratios. , 1997 .

[202]  K. Landfester Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles. , 2009, Angewandte Chemie.

[203]  Xue-Qing Zhang,et al.  Interactions of nanomaterials and biological systems: Implications to personalized nanomedicine. , 2012, Advanced drug delivery reviews.

[204]  P. Marie,et al.  Effects of low doses of strontium on bone quality and quantity in rats. , 1990, Bone.

[205]  María Vallet-Regí,et al.  Functionalization of mesoporous materials with long alkyl chains as a strategy for controlling drug delivery pattern , 2006 .

[206]  Yunfeng Shi,et al.  Synthesis of zinc oxide nanotubes within ultrathin anodic aluminum oxide membrane by sol–gel method , 2013 .

[207]  Katsuhiko Ariga,et al.  Preparation and characterization of a novel organic-inorganic nanohybrid "cerasome" formed with a liposomal membrane and silicate surface. , 2007, Chemistry.

[208]  Tian Xia,et al.  Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model. , 2011, ACS nano.

[209]  George W. Arnold,et al.  Phosphate glass dissolution in aqueous solutions , 1984 .

[210]  Eduardo Saiz,et al.  Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. , 2011, Materials science & engineering. C, Materials for biological applications.

[211]  R. Hill,et al.  Influence of magnesia on the structure and properties of bioactive glasses , 2010 .

[212]  L L Hench,et al.  Toxicology and biocompatibility of bioglasses. , 1981, Journal of biomedical materials research.

[213]  Jianlin Shi,et al.  Synthesis of core-shell structured dual-mesoporous silica spheres with tunable pore size and controllable shell thickness. , 2010, Journal of the American Chemical Society.

[214]  J. S. Beck,et al.  Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism , 1992, Nature.

[215]  O. Sprockel,et al.  A controlled porosity drug delivery system , 1998 .

[216]  Aifei Wang,et al.  pH-Triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids. , 2011, Journal of the American Chemical Society.

[217]  T. Asefa,et al.  Mesoporosity and functional group dependent endocytosis and cytotoxicity of silica nanomaterials. , 2009, Chemical research in toxicology.

[218]  Gurbinder Kaur,et al.  Synthesis, cytotoxicity, and hydroxyapatite formation in 27-Tris-SBF for sol-gel based CaO-P2O5-SiO2-B2O3-ZnO bioactive glasses , 2014, Scientific Reports.

[219]  Gang Wang,et al.  Accelerated oxidation of epinephrine by silica nanoparticles. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[220]  Julian R. Jones,et al.  Bioactive glass and hybrid scaffolds prepared by sol–gel method for bone tissue engineering , 2005 .

[221]  María Vallet-Regí,et al.  Ceramics for medical applications , 2001 .

[222]  N. Thanh,et al.  Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. , 2014, Nanoscale.

[223]  Christy L Haynes,et al.  Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. , 2010, Journal of the American Chemical Society.

[224]  Julian R Jones,et al.  Review of bioactive glass: from Hench to hybrids. , 2013, Acta biomaterialia.

[225]  A. Zahr,et al.  Macrophage uptake of core-shell nanoparticles surface modified with poly(ethylene glycol). , 2006, Langmuir : the ACS journal of surfaces and colloids.

[226]  G. Sorarù,et al.  Novel SiC/C Aerogels Through Pyrolysis of Polycarbosilane Precursors , 2014 .

[227]  D. Brauer,et al.  Predicting the bioactivity of glasses using the network connectivity or split network models , 2011 .

[228]  Adil Akkouch,et al.  Engineering bone tissue using human dental pulp stem cells and an osteogenic collagen-hydroxyapatite-poly (l-lactide-co-ɛ-caprolactone) scaffold , 2014, Journal of biomaterials applications.

[229]  Tadashi Kokubo,et al.  Apatite formation on surfaces of ceramics, metals and polymers in body environment , 1998 .

[230]  M. Yoshimura,et al.  Hydrothermal synthesis of biocompatible whiskers , 1994, Journal of Materials Science.

[231]  P. Barboux,et al.  Sol-gel synthesis of phosphates , 1992 .

[232]  M. Jobbágy,et al.  Improving silica matrices for encapsulation of Escherichiacoli using osmoprotectors , 2011 .

[233]  Galo J. A. A. Soler-Illia,et al.  Mesoporous hybrid thin films: the physics and chemistry beneath. , 2006, Chemistry.

[234]  P. Fabbri,et al.  Monitoring of the Sol‐Gel Synthesis of Organic‐inorganic Hybrids by FTIR Transmission, FTIR/ATR, NIR and Raman Spectroscopy , 2008 .

[235]  H. Gu,et al.  Synthesis and characterization of pore size-tunable magnetic mesoporous silica nanoparticles. , 2011, Journal of colloid and interface science.

[236]  K. Nakanishi,et al.  Apatite Formation Induced by Silica Gel in a Simulated Body Fluid , 1992 .

[237]  L L Hench,et al.  An investigation of bioactive glass powders by sol-gel processing. , 1991, Journal of applied biomaterials : an official journal of the Society for Biomaterials.

[238]  Larry L. Hench,et al.  Regeneration of trabecular bone using porous ceramics , 2003 .

[239]  D. Discher,et al.  Shape effects of filaments versus spherical particles in flow and drug delivery. , 2007, Nature nanotechnology.

[240]  M. Lombardi,et al.  Sol–gel derived 45S5 bioglass: synthesis, microstructural evolution and thermal behaviour , 2012, Journal of Materials Science: Materials in Medicine.

[241]  C. Sanchez,et al.  Synthesis and Characterization of Surface-Protected Nanocrystalline Titania Particles , 1998 .

[242]  M. Vallet‐Regí,et al.  Bioactive sol-gel glasses with and without a hydroxycarbonate apatite layer as substrates for osteoblast cell adhesion and proliferation. , 2003, Biomaterials.

[243]  Marivalda Magalhães Pereira,et al.  Sol-gel synthesis of bioactive glass scaffolds for tissue engineering: effect of surfactant type and concentration. , 2005, Journal of biomedical materials research. Part B, Applied biomaterials.

[244]  C. C. Landry,et al.  Adsorption of DNA into mesoporous silica. , 2006, The journal of physical chemistry. B.

[245]  Iqbal Gill,et al.  Bio-doped Nanocomposite Polymers: Sol-Gel Bioencapsulates , 2001 .

[246]  A. Lebugle,et al.  Characterization and Reactivity of Nanosized Calcium Phosphates Prepared in Anhydrous Ethanol. , 1995 .

[247]  Cato T. Laurencin,et al.  Bone-Graft Substitutes: Facts, Fictions, and Applications , 2001, The Journal of bone and joint surgery. American volume.

[248]  S F Hulbert,et al.  Potential of ceramic materials as permanently implantable skeletal prostheses. , 1970, Journal of biomedical materials research.

[249]  R. Reis,et al.  Functional nanostructured chitosan–siloxane hybrids , 2005 .

[250]  R. Weissleder,et al.  Imaging in the era of molecular oncology , 2008, Nature.

[251]  Julian R. Jones,et al.  Bioactivity of gel-glass powders in the CaO-SiO2 system: a comparison with ternary (CaO-P2O5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O). , 2003, Journal of biomedical materials research. Part A.

[252]  G. Scherer,et al.  Stress in aerogel during depressurization of autoclave: II. Silica gels , 1994 .

[253]  Bruce Dunn,et al.  Biomolecular materials based on sol-gel encapsulated proteins , 1994 .

[254]  Zhiguang Guo,et al.  Biomimetic transparent and superhydrophobic coatings: from nature and beyond nature. , 2015, Chemical communications.

[255]  Eveliina Munukka,et al.  Antibacterial effects and dissolution behavior of six bioactive glasses. , 2009, Journal of biomedical materials research. Part A.

[256]  J. Knowles,et al.  Sol–Gel Phosphate-based Glass for Drug Delivery Applications , 2012, Journal of biomaterials applications.

[257]  C. Z. Chen,et al.  Effect of various additives on microstructure, mechanical properties, and in vitro bioactivity of sodium oxide-calcium oxide-silica-phosphorus pentoxide glass-ceramics. , 2013, Journal of colloid and interface science.

[258]  Yuming Zhou,et al.  Zirconia nanoparticles enhanced grafted collagen tri-helix scaffold for unmediated biosensing of hydrogen peroxide. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[259]  Fumin Wang,et al.  Preparation of Nanocrystalline TiO2 with Mixed Template and Its Application for Dye-Sensitized Solar Cells , 2004 .

[260]  Jin Xie,et al.  Nanoparticle-based theranostic agents. , 2010, Advanced drug delivery reviews.

[261]  D. Mooney,et al.  Hydrogels for tissue engineering. , 2001, Chemical reviews.

[262]  Andrés J. García Get a grip: integrins in cell-biomaterial interactions. , 2005, Biomaterials.

[263]  A. Jillavenkatesa,et al.  Sol–gel processing of hydroxyapatite , 1998 .

[264]  Yaping Li,et al.  Intracellular localization and cytotoxicity of spherical mesoporous silica nano- and microparticles. , 2009, Small.

[265]  Saji George,et al.  Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. , 2009, ACS nano.

[266]  T. Albrektsson,et al.  Osteoinduction, osteoconduction and osseointegration , 2001, European Spine Journal.

[267]  何前军 Intracellular Localization and Cytotoxicity of Spherical Mesoporous Silica Nano- and Microparticles , 2009 .

[268]  Jung Ho Yu,et al.  Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. , 2006, Journal of the American Chemical Society.

[269]  K. Finnie,et al.  Biodegradability of sol–gel silica microparticles for drug delivery , 2009 .

[270]  Hyoun‐Ee Kim,et al.  Bioactive and degradable hybridized nanofibers of gelatin-siloxane for bone regeneration. , 2008, Journal of biomedical materials research. Part A.

[271]  J. C. Phillips,et al.  Constraint theory, vector percolation and glass formation , 1985 .

[272]  D. Dionysiou,et al.  The effect of solvent in the sol–gel synthesis of visible light-activated, sulfur-doped TiO2 nanostructured porous films for water treatment , 2014 .

[273]  J. Zink,et al.  Sol-gel chemistry and materials. , 2007, Accounts of Chemical Research.

[274]  Taeghwan Hyeon,et al.  Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. , 2011, Accounts of chemical research.

[275]  Shiyong Liu,et al.  Fluorescent pH-sensing organic/inorganic hybrid mesoporous silica nanoparticles with tunable redox-responsive release capability. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[276]  A. B. Wojcik,et al.  Organic-inorganic gels based on silica and multifunctional acrylates , 1994 .

[277]  C. A. Tolman,et al.  Steric effects of phosphorus ligands in organometallic chemistry and homogeneous catalysis , 1977 .

[278]  G. Arena,et al.  Steric and electronic factors influencing the reactivity of tertiary phosphines toward platinum(II) complexes , 1992 .

[279]  David Avnir,et al.  Biochemically active sol-gel glasses: The trapping of enzymes ☆ , 1990 .

[280]  T. Salmon,et al.  Photocatalytic degradation of phenol and benzoic acid using zinc oxide powders prepared by the sol-gel process , 2013 .

[281]  W. Tseng,et al.  Aging effect on the phase evolution of water-based sol-gel hydroxyapatite. , 2002, Biomaterials.

[282]  E. Kamitsos,et al.  Infrared-reflectance spectra of heat-treated sol-gel-derived silica. , 1993, Physical review. B, Condensed matter.

[283]  Gerhard Schmidmaier,et al.  What should be the characteristics of the ideal bone graft substitute? Combining scaffolds with growth factors and/or stem cells. , 2011, Injury.

[284]  M. Vallet‐Regí,et al.  Surface and Chemical Study of SiO2·P2O5·CaO·(MgO) Bioactive Glasses , 2000 .

[285]  A. Berdal,et al.  Effects of strontium-doped bioactive glass on the differentiation of cultured osteogenic cells. , 2011, European cells & materials.

[286]  Á. Delgado,et al.  Magnetic colloids as drug vehicles. , 2008, Journal of pharmaceutical sciences.

[287]  J. Brennan,et al.  Characterization of Fluorescent Phospholipid Liposomes Entrapped in Sol−Gel Derived Silica , 2002 .

[288]  L L Hench,et al.  In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses. , 2002, Journal of biomedical materials research.

[289]  A. Mikos,et al.  Hydroxyapatite fiber reinforced poly(alpha-hydroxy ester) foams for bone regeneration. , 1998, Biomaterials.

[290]  Renata Reisfeld,et al.  The nature of the silica cage as reflected by spectral changes and enhanced photostability of trapped Rhodamine 6G , 1984 .

[291]  F. Moztarzadeh,et al.  Synthesis, characterization and in vitro bioactivity of sol-gel-derived SiO2-CaO-P2O5-MgO bioglass , 2009 .

[292]  F. Jotterand Nanomedicine: how it could reshape clinical practice. , 2007, Nanomedicine.

[293]  A. Ameen.,et al.  The surface analysis of implant materials. 1. The surface composition of a titanium dental implant material. , 1993, Clinical oral implants research.

[294]  Katsuhide Fujita,et al.  Protein adsorption of ultrafine metal oxide and its influence on cytotoxicity toward cultured cells. , 2009, Chemical research in toxicology.

[295]  Yugyung Lee,et al.  Biomedical applications of collagen. , 2001, International journal of pharmaceutics.

[296]  H. Xiong,et al.  Polymerization Initiated by Inherent Free Radicals on Nanoparticle Surfaces: A Simple Method of Obtaining Ultrastable (ZnO)Polymer Core–Shell Nanoparticles with Strong Blue Fluorescence , 2006 .

[297]  J. Knowles,et al.  Synthesis and structural characterization of P2O5-CaO-Na2O sol-gel materials , 2007 .

[298]  W. Stöber,et al.  Controlled growth of monodisperse silica spheres in the micron size range , 1968 .

[299]  A. C. Hunter,et al.  Nanomedicine: current status and future prospects , 2005, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[300]  Richard A. Martin,et al.  Structural characterization of titanium-doped Bioglass using isotopic substitution neutron diffraction. , 2012, Physical chemistry chemical physics : PCCP.

[301]  K. Hidajat,et al.  Functionalized SBA-15 materials as carriers for controlled drug delivery: influence of surface properties on matrix-drug interactions. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[302]  G. Nelson,et al.  PMMA/silica nanocomposite studies: Synthesis and properties , 2004 .

[303]  A. Osaka,et al.  Calcium apatite prepared from calcium hydroxide and orthophosphoric acid , 1991 .

[304]  Mohammad Hasanzadeh,et al.  Mesoporous silica-based materials for use in biosensors , 2012 .

[305]  Dong Chen,et al.  The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. , 2011, ACS nano.

[306]  Julian R. Jones,et al.  Extracellular matrix formation and mineralization on a phosphate-free porous bioactive glass scaffold using primary human osteoblast (HOB) cells. , 2007, Biomaterials.

[307]  K. Valsaraj,et al.  Low-temperature synthesis of porous hydroxyapatite scaffolds using polyaphron templates , 2006 .

[308]  Sumitra Datta,et al.  Enzyme immobilization: an overview on techniques and support materials , 2012, 3 Biotech.

[309]  M. Vallet‐Regí,et al.  A New Property of MCM-41: Drug Delivery System , 2001 .

[310]  Chung-Yuan Mou,et al.  The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells. , 2007, Biomaterials.

[311]  K. Unger,et al.  The synthesis of micrometer‐ and submicrometer‐size spheres of ordered mesoporous oxide MCM‐41 , 1997 .

[312]  L. Spanhel Colloidal ZnO nanostructures and functional coatings: A survey , 2006 .

[313]  Cato T Laurencin,et al.  Electrospun nanofibrous structure: a novel scaffold for tissue engineering. , 2002, Journal of biomedical materials research.

[314]  Joan E. Shields,et al.  Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density , 2006 .

[315]  Puyam S. Singh,et al.  Mesoporous silica spheres via 1-alkylamine templating route , 2001 .

[316]  D. Holcomb,et al.  Variability of hydroxyapatite preparations. , 1982, Calcified tissue international.

[317]  T. Woignier,et al.  Aerogels Materials as Space Debris Collectors , 2013 .

[318]  C. Rüssel,et al.  Hydroxyapatite coatings by a polymeric route , 1992 .

[319]  Hyoun‐Ee Kim,et al.  Nanostructured poly(epsilon-caprolactone)-silica xerogel fibrous membrane for guided bone regeneration. , 2010, Acta biomaterialia.

[320]  L. Hench,et al.  Preparation of poly(L-lactic acid)-polysiloxane-calcium carbonate hybrid membranes for guided bone regeneration. , 2006, Biomaterials.

[321]  D. Day,et al.  Effect of pyrophosphate ions on the conversion of calcium–lithium–borate glass to hydroxyapatite in aqueous phosphate solution , 2010, Journal of materials science. Materials in medicine.

[322]  A. Pierre,et al.  Introduction to Sol-Gel Processing , 1998 .

[323]  A. Patlolla,et al.  Evaluating apatite formation and osteogenic activity of electrospun composites for bone tissue engineering , 2014, Biotechnology and bioengineering.

[324]  Hao Li,et al.  The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells , 2011, Nanotechnology.

[325]  P. Simon,et al.  Antimicrobial coatings on textiles–modification of sol–gel layers with organic and inorganic biocides , 2010 .

[326]  Christy L. Haynes,et al.  Functional assessment of metal oxide nanoparticle toxicity in immune cells. , 2010, ACS nano.

[327]  Robert Langer,et al.  Biodegradable Polymer Scaffolds for Tissue Engineering , 1994, Bio/Technology.

[328]  R. Oréfice,et al.  Novel multicomponent silicate–poly(vinyl alcohol) hybrids with controlled reactivity , 2000 .

[329]  C. Canal,et al.  Fibre-reinforced calcium phosphate cements: a review. , 2011, Journal of the mechanical behavior of biomedical materials.

[330]  T. Hyeon,et al.  Surface ligands in synthesis, modification, assembly and biomedical applications of nanoparticles , 2014 .

[331]  W. White,et al.  Structure of Na in aluminosilicate glasses; a far-infrared reflectance spectroscopic study , 1988 .

[332]  Mark B. Carter,et al.  Erratum: The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers (Nature Materials (2011) 10 (389-397)) , 2011 .

[333]  R. Iler The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica , 1979 .

[334]  D. Fitzmaurice,et al.  Visible Light Sensitization by cis-Bis(thiocyanato)bis(2,2"-bipyridyl-4,4"-dicarboxylato)ruthenium(II) of a Transparent Nanocrystalline ZnO Film Prepared by Sol-Gel Techniques , 1994 .

[335]  M. Pagliaro,et al.  From molecules to systems: sol-gel microencapsulation in silica-based materials. , 2011, Chemical reviews.

[336]  Xufeng Zhou,et al.  Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. , 2004, Angewandte Chemie.

[337]  E. Stachowiak,et al.  Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[338]  L. Hupa,et al.  Surface reactions of bioactive glasses in buffered solutions , 2012 .

[339]  Min-Soo Kim,et al.  Role of collagen membrane in lateral onlay grafting with bovine hydroxyapatite incorporated with collagen matrix in dogs , 2013, Journal of periodontal & implant science.

[340]  G. Ozin,et al.  Controlling morphology and porosity to improve performance of molecularly imprinted sol-gel silica. , 2014, Chemical Society reviews.

[341]  C. J. Brinker,et al.  Hydrolysis and condensation of silicates: Effects on structure , 1988 .

[342]  C. K. Jones,et al.  Novel poly(n-butyl methacrylate)/titanium oxide alloys produced by te sol–gel process for titanium alkoxides , 1990 .

[343]  P. Saltman,et al.  The role of trace minerals in osteoporosis. , 1993, Journal of the American College of Nutrition.

[344]  S. Gambhir,et al.  Sol-gel synthesis and electrospraying of biodegradable (P2O5)55-(CaO)30-(Na2O)15 glass nanospheres as a transient contrast agent for ultrasound stem cell imaging. , 2015, ACS nano.

[345]  Hamidreza Ghandehari,et al.  Impact of silica nanoparticle design on cellular toxicity and hemolytic activity. , 2011, ACS nano.

[346]  Klaas Nicolay,et al.  Paramagnetic lipid-coated silica nanoparticles with a fluorescent quantum dot core: a new contrast agent platform for multimodality imaging. , 2008, Bioconjugate chemistry.

[347]  L. Helm,et al.  Inorganic and Bioinorganic Solvent Exchange Mechanisms , 2005 .

[348]  Sudha Kumari,et al.  Endocytosis unplugged: multiple ways to enter the cell , 2010, Cell Research.

[349]  P. Low,et al.  Folate-targeted therapeutic and imaging agents for cancer. , 2009, Current opinion in chemical biology.

[350]  G. Belibasakis,et al.  Effects of growth factors and cytokines on osteoblast differentiation. , 2006, Periodontology 2000.

[351]  Mauro Ferrari,et al.  Logic-embedded vectors for intracellular partitioning, endosomal escape, and exocytosis of nanoparticles. , 2010, Small.

[352]  C. Robic,et al.  Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. , 2008, Chemical reviews.

[353]  S. Sakka,et al.  Synthesis of Hydroxyapatite from Metal Alkoxides through Sot-Gel Technique , 1990 .

[354]  Luis M Liz-Marzán,et al.  Recent Progress on Silica Coating of Nanoparticles and Related Nanomaterials , 2010, Advanced materials.

[355]  E. Ruiz-Hitzky,et al.  Novel Organic–Inorganic Mesophases: Self‐Templating Synthesis and Intratubular Swelling , 2002 .

[356]  Xiaofeng Chen,et al.  Synthesis and in vitro bioactivity of novel mesoporous hollow bioactive glass microspheres , 2009 .

[357]  Cecilia Sahlgren,et al.  Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles--opportunities & challenges. , 2010, Nanoscale.

[358]  K. Gross,et al.  Thin hydroxyapatite coatings via sol–gel synthesis , 1998, Journal of materials science. Materials in medicine.

[359]  María Vallet-Regí,et al.  Bone-regenerative bioceramic implants with drug and protein controlled delivery capability , 2008 .

[360]  Ivan Gorelikov,et al.  Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles. , 2008, Nano letters.

[361]  S. Murcia‐Mascarós,et al.  Mesoporous iron phosphate/phosphonate hybrid materials , 2014 .

[362]  Sumin Zhu,et al.  Preparation and characterization of macroporous sol–gel bioglass , 2005 .

[363]  Kemin Wang,et al.  Uptake of silica-coated nanoparticles by HeLa cells. , 2005, Journal of nanoscience and nanotechnology.

[364]  Hyesung Jeon,et al.  Facile synthesis of monodispersed mesoporous silica nanoparticles with ultralarge pores and their application in gene delivery. , 2011, ACS nano.

[365]  Jerry S. H. Lee,et al.  Magnetic nanoparticles in MR imaging and drug delivery. , 2008, Advanced drug delivery reviews.

[366]  Victor S-Y Lin,et al.  A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. , 2004, Journal of the American Chemical Society.

[367]  Julian R. Jones Sol‐Gel Derived Glasses for Medicine , 2012 .

[368]  Galo J. A. A. Soler-Illia,et al.  Multifunctional hybrids by combining ordered mesoporous materials and macromolecular building blocks. , 2011, Chemical Society reviews.

[369]  Claudio Rottman,et al.  Doped sol-gel glasses as chemical sensors , 1990 .

[370]  M. Bonde,et al.  Biodegradable Polymer Scaffold for Tissue Engineering , 2011 .

[371]  R. Tamaki,et al.  Synthesis of Poly(N,N-dimethylacrylamide)/Silica Gel Polymer Hybrids by in situ Polymerization Method , 1998 .

[372]  F. Palumbo,et al.  Drug Delivery Devices Based on Mesoporous Silicate , 2004, Drug delivery.

[373]  P. Hauschka,et al.  Effects of soluble cobalt and cobalt incorporated into calcium phosphate layers on osteoclast differentiation and activation. , 2009, Biomaterials.

[374]  Min Zhang,et al.  Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. , 2009, Small.

[375]  Julian R Jones,et al.  Evaluation of 3-D bioactive glass scaffolds dissolution in a perfusion flow system with X-ray microtomography. , 2011, Acta biomaterialia.

[376]  R. Noort,et al.  Characterization of sol-gel surfaces for biomedical applications , 1996 .

[377]  Z. Dai,et al.  Recent advances in liposomal nanohybrid cerasomes as promising drug nanocarriers. , 2014, Advances in colloid and interface science.

[378]  Larry L. Hench,et al.  The sol-gel process , 1990 .

[379]  Matthias Epple,et al.  Biological and medical significance of calcium phosphates. , 2002, Angewandte Chemie.

[380]  Marc A. Anderson,et al.  Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids , 1991 .

[381]  S. Uchiyama,et al.  Polymers for Biosensors Construction , 2013 .

[382]  Eric C. Carnes,et al.  Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility. , 2013, Accounts of chemical research.

[383]  R. Langer,et al.  Nanomedicine: developing smarter therapeutic and diagnostic modalities. , 2006, Advanced drug delivery reviews.

[384]  R Z LeGeros,et al.  Calcium Phosphate Materials in Restorative Dentistry: a Review , 1988, Advances in dental research.

[385]  C. Sanchez,et al.  Sol-gel chemistry , 1992 .

[386]  B. C. Bunker,et al.  Molecular mechanisms for corrosion of silica and silicate glasses , 1994 .

[387]  H. Gu,et al.  Adsorption and desorption behaviors of DNA with magnetic mesoporous silica nanoparticles. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[388]  Kyu-Seog Hwang,et al.  Chemical and structural changes of hydroxyapatite films by using a sol–gel method , 1999 .

[389]  Jeremy L. Steinbacher,et al.  Increased efficacy of doxorubicin delivered in multifunctional microparticles for mesothelioma therapy , 2011, International journal of cancer.

[390]  M. Collinson Recent trends in analytical applications of organically modified silicate materials , 2002 .

[391]  David Grosso,et al.  An optical fibre pH sensor based on dye doped mesostructured silica , 2004 .

[392]  Warren C W Chan,et al.  Mediating tumor targeting efficiency of nanoparticles through design. , 2009, Nano letters.

[393]  Jiang Chang,et al.  Preparation of Macroporous Sol-Gel Bioglass Using PVA Particles as Pore Former , 2004 .

[394]  Clément Sanchez,et al.  Sol-gel chemistry of transition metal oxides , 1988 .

[395]  T. Woignier,et al.  Mechanical Strength Evolution from Aerogels to Silica Glass , 1997 .

[396]  M. Larsen An investigation of the theoretical background for the stability of the calcium-phosphate salts and their mutual conversion in aqueous solutions. , 1986, Archives of oral biology.

[397]  T. Woignier,et al.  Mechanical strength of silica aerogels , 1988 .

[398]  Y. Akagawa,et al.  New development of carbonate apatite-chitosan scaffold based on lyophilization technique for bone tissue engineering. , 2013, Dental materials journal.

[399]  J. Gergely,et al.  Zero-length crosslinking procedure with the use of active esters. , 1990, Analytical biochemistry.

[400]  B. Ben-Nissan,et al.  Sol-Gel Derived Hydroxylapatite Coatings for Biomedical Applications , 1995 .

[401]  T. Bein,et al.  Role of endosomal escape for disulfide-based drug delivery from colloidal mesoporous silica evaluated by live-cell imaging. , 2010, Nano letters.

[402]  T. Yokoyama,et al.  The Dissolution of Amorphous Silica in the Presence of Tropolone Under Acidic Conditions , 2014, Clays and Clay Minerals.

[403]  A. Ballesteros,et al.  Bioencapsulation within synthetic polymers (Part 1): sol-gel encapsulated biologicals. , 2000, Trends in biotechnology.

[404]  C. Kirkpatrick,et al.  Software-supported image quantification of angiogenesis in an in vitro culture system: application to studies of biocompatibility. , 2002, Biomaterials.

[405]  U. Hempel,et al.  Biocompatibility of Modified Silica-Protein Composite Layers , 2000 .

[406]  D. Brühwiler Postsynthetic functionalization of mesoporous silica. , 2010, Nanoscale.

[407]  Hyoun‐Ee Kim,et al.  Silica xerogel-chitosan nano-hybrids for use as drug eluting bone replacement , 2010, Journal of materials science. Materials in medicine.

[408]  J. Knowles,et al.  Sol–gel synthesis of the P2O5–CaO–Na2O–SiO2 system as a novel bioresorbable glass , 2005 .

[409]  Yufang Zhu,et al.  Rattle-type Fe(3)O(4)@SiO(2) hollow mesoporous spheres as carriers for drug delivery. , 2010, Small.

[410]  Nasrin Talebian,et al.  The anti-adherence and bactericidal activity of sol–gel derived nickel oxide nanostructure films: solvent effect , 2013, Journal of Sol-Gel Science and Technology.

[411]  S. Cosnier,et al.  Improvement of the analytical characteristics of an enzyme electrode for free and total cholesterol via laponite clay additives , 1995 .

[412]  P. Colomban Gel technology in ceramics, glass-ceramics and ceramic-ceramic composites☆ , 1989 .

[413]  C. Perry,et al.  An overview of the fundamentals of the chemistry of silica with relevance to biosilicification and technological advances , 2012, The FEBS journal.

[414]  Julian R Jones,et al.  Factors affecting the structure and properties of bioactive foam scaffolds for tissue engineering. , 2004, Journal of biomedical materials research. Part B, Applied biomaterials.

[415]  Yongyao Xia,et al.  Bonding Polyether onto ZnO Nanoparticles: An Effective Method for Preparing Polymer Nanocomposites with Tunable Luminescence and Stable Conductivity , 2005 .

[416]  E. Sánchez,et al.  Effect of hydrolysis catalyst on the Ti deficiency and crystallite size of sol-gel-TiO_2 crystalline phases , 1995 .

[417]  Yen Wei,et al.  Simultaneous immobilization of horseradish peroxidase and glucose oxidase in mesoporous sol-gel host materials. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[418]  Changsheng Liu,et al.  The bio-functional role of calcium in mesoporous silica xerogels on the responses of osteoblasts in vitro , 2010, Journal of materials science. Materials in medicine.

[419]  Ou Chen,et al.  Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration. , 2011, Angewandte Chemie.

[420]  Shilun Qiu,et al.  Controlled release of Captopril by regulating the pore size and morphology of ordered mesoporous silica , 2006 .

[421]  A. Boccaccini,et al.  Effect of particulate bioactive glasses on human macrophages and monocytes in vitro. , 2005, Journal of biomedical materials research. Part A.

[422]  Q. Huo,et al.  Organization of Organic Molecules with Inorganic Molecular Species into Nanocomposite Biphase Arrays , 1994 .

[423]  Nasrin Talebian,et al.  Sol–gel derived nanostructured nickel oxide films: Effect of solvent on crystallographic orientations , 2014 .

[424]  Victor S-Y Lin,et al.  A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. , 2003, Journal of the American Chemical Society.

[425]  J. Hubbell,et al.  Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering , 2005, Nature Biotechnology.

[426]  J. Nedelec,et al.  Strontium-Delivering Glasses with Enhanced Bioactivity: A New Biomaterial for Antiosteoporotic Applications? , 2008 .

[427]  J. L. Lippert,et al.  In situ polymerization of tetraethoxysilane in polymers: chemical nature of the interactions , 1992 .

[428]  J. Knowles Phosphate based glasses for biomedical applications , 2003 .

[429]  James M. Anderson,et al.  Biological Responses to Materials , 2001 .

[430]  J. Vacanti,et al.  Tissue engineering : Frontiers in biotechnology , 1993 .

[431]  Nagaraja D. Hegde,et al.  Physical properties of methyltrimethoxysilane based elastic silica aerogels prepared by the two-stage sol–gel process , 2007 .

[432]  M. Vallet‐Regí,et al.  Bioactive and degradable organic–inorganic hybrids , 2005 .

[433]  É. Duguet,et al.  The formation of supported lipid bilayers on silica nanoparticles revealed by cryoelectron microscopy. , 2005, Nano letters.

[434]  María Vallet-Regí,et al.  New developments in ordered mesoporous materials for drug delivery , 2010 .

[435]  Delbert E Day,et al.  Bioactive glass in tissue engineering. , 2011, Acta biomaterialia.

[436]  D. Zhao,et al.  Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties. , 2003, Angewandte Chemie.

[437]  Aldo R Boccaccini,et al.  A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. , 2011, Biomaterials.

[438]  Syam P Nukavarapu,et al.  Short-term and long-term effects of orthopedic biodegradable implants. , 2011, Journal of long-term effects of medical implants.

[439]  Ashok Kumar,et al.  Bioactive materials for biomedical applications using sol–gel technology , 2008, Biomedical materials.

[440]  G. Vozzi,et al.  Collagen-gelatin-genipin-hydroxyapatite composite scaffolds colonized by human primary osteoblasts are suitable for bone tissue engineering applications: in vitro evidences. , 2014, Journal of biomedical materials research. Part A.

[441]  S. Rajeswari,et al.  Structural and electrochemical behaviour of sol-gel zirconia films on 316L stainless-steel in simulated body fluid environment , 2003 .

[442]  Cato T Laurencin,et al.  Bone tissue engineering: recent advances and challenges. , 2012, Critical reviews in biomedical engineering.

[443]  Jiyu Fang,et al.  Preparation of flexible, hydrophobic, and oleophilic silica aerogels based on a methyltriethoxysilane precursor , 2014, Journal of Materials Science.

[444]  María Vallet-Regí,et al.  Influence of mesoporous structure type on the controlled delivery of drugs: release of ibuprofen from MCM-48, SBA-15 and functionalized SBA-15 , 2009 .

[445]  D. Choi,et al.  Effect of two-step sol-gel reaction on the mesoporous silica structure. , 2003, Journal of colloid and interface science.

[446]  Zhengguo Jin,et al.  Synthesis of TiO2 porous thin films by polyethylene glycol templating and chemistry of the process , 2005 .

[447]  G. Cuniberti,et al.  Multifunctional magnetic mesoporous bioactive glass scaffolds with a hierarchical pore structure. , 2011, Acta biomaterialia.

[448]  M. Boulos,et al.  Morphological study of hydroxyapatite nanocrystal suspension , 2000, Journal of materials science. Materials in medicine.

[449]  Sandra L. Schmid,et al.  Regulated portals of entry into the cell , 2003, Nature.

[450]  Hyoun‐Ee Kim,et al.  Synthesis and characterization of drug-loaded poly(ε-caprolactone)/silica hybrid nanofibrous scaffolds , 2013 .

[451]  S. Bhattarai,et al.  Enhanced Gene and siRNA Delivery by Polycation-Modified Mesoporous Silica Nanoparticles Loaded with Chloroquine , 2010, Pharmaceutical Research.

[452]  H. Kim,et al.  Collagen hydrogels incorporated with surface-aminated mesoporous nanobioactive glass: Improvement of physicochemical stability and mechanical properties is effective for hard tissue engineering. , 2013, Acta biomaterialia.

[453]  E. Matijević,et al.  Preparation and mechanism of formation of titanium dioxide hydrosols of narrow size distribution , 1977 .

[454]  David J. Mooney,et al.  DNA delivery from polymer matrices for tissue engineering , 1999, Nature Biotechnology.

[455]  Taeghwan Hyeon,et al.  Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. , 2009, Chemical Society reviews.

[456]  W. Tseng,et al.  Structural evolution of sol-gel-derived hydroxyapatite. , 2002, Biomaterials.

[457]  A. Clark,et al.  Calcium phosphate formation on sol-gel-derived bioactive glasses in vitro. , 1994, Journal of biomedical materials research.

[458]  R. Lockey,et al.  Cationic silica nanoparticles as gene carriers: synthesis, characterization and transfection efficiency in vitro and in vivo. , 2004, Journal of nanoscience and nanotechnology.

[459]  Shuming Nie,et al.  Mesoporous silica beads embedded with semiconductor quantum dots and iron oxide nanocrystals: dual-function microcarriers for optical encoding and magnetic separation. , 2006, Analytical chemistry.

[460]  Myung-Haing Cho,et al.  Mannosylated polyethylenimine coupled mesoporous silica nanoparticles for receptor-mediated gene delivery. , 2008, International journal of pharmaceutics.

[461]  G. Muzio,et al.  Development of glass-ceramic scaffolds for bone tissue engineering: characterisation, proliferation of human osteoblasts and nodule formation. , 2007, Acta biomaterialia.

[462]  Hongchen Gu,et al.  The packaging of siRNA within the mesoporous structure of silica nanoparticles. , 2011, Biomaterials.

[463]  Mauro Ferrari,et al.  Intravascular Delivery of Particulate Systems: Does Geometry Really Matter? , 2008, Pharmaceutical Research.

[464]  B Gasser,et al.  Thin films of calcium phosphate and titanium dioxide by a sol-gel route: a new method for coating medical implants , 1999, Journal of materials science. Materials in medicine.

[465]  A. Walcarius,et al.  Analytical chemistry with silica sol-gels: traditional routes to new materials for chemical analysis. , 2009, Annual review of analytical chemistry.

[466]  Dominique Bernard,et al.  Non-destructive quantitative 3D analysis for the optimisation of tissue scaffolds. , 2007, Biomaterials.

[467]  Si-yu Ni,et al.  The Influence of Na and Ti on the In Vitro Degradation and Bioactivity in 58S Sol-Gel Bioactive Glass , 2012 .

[468]  Plinio Innocenzi,et al.  Infrared spectroscopy of sol–gel derived silica-based films: a spectra-microstructure overview , 2003 .

[469]  V. S. Lin,et al.  Mesoporous silica nanoparticle-based double drug delivery system for glucose-responsive controlled release of insulin and cyclic AMP. , 2009, Journal of the American Chemical Society.

[470]  J. Broekhoff Mesopore Determination from Nitrogen Sorption Isotherms: Fundamentals, Scope, Limitations , 1979 .

[471]  S. Rajeswari,et al.  Preparation and Characterization of Microcrystalline Hydroxyapatite Using Sol Gel Method , 2006 .

[472]  S. Jeong,et al.  pH-Tunable calcium phosphate covered mesoporous silica nanocontainers for intracellular controlled release of guest drugs. , 2011, Angewandte Chemie.

[473]  C. Pantano,et al.  Elastic Moduli of Silica Gels Prepared with Tetraethoxysilane , 1986 .

[474]  F. Wittea,et al.  In vivo corrosion of four magnesium alloys and the associated bone response , 2004 .

[475]  Gordon P. Bierwagen,et al.  Sol–gel coatings on metals for corrosion protection , 2009 .

[476]  P. D.M.,et al.  Titanium-containing bioactive phosphate glasses , 2022 .

[477]  Cuie Wen,et al.  Bioactive Materials , 2017 .

[478]  F. Renzo,et al.  Textural control of micelle-templated mesoporous silicates: the effects of co-surfactants and alkalinity , 1999 .

[479]  Thomas Graham XXXV.—On the properties of silicic acid and other analogous colloidal substances , 1864 .

[480]  Warren C W Chan,et al.  Strategies for the intracellular delivery of nanoparticles. , 2011, Chemical Society reviews.

[481]  R. Hill An alternative view of the degradation of bioglass , 1996 .

[482]  M. Matthewson,et al.  Mechanical properties of ceramics , 1996 .

[483]  Qirui Fan,et al.  Magnetic quantum dots in biotechnology – synthesis and applications , 2013, Biotechnology journal.

[484]  John M. Powers,et al.  Hydroxyapatite fiber reinforced poly(α-hydroxy ester) foams for bone regeneration , 1998 .

[485]  H. Gruber,et al.  Bone loss induced by dietary magnesium reduction to 10% of the nutrient requirement in rats is associated with increased release of substance P and tumor necrosis factor-alpha. , 2004, The Journal of nutrition.

[486]  V. S. Lin,et al.  Mesoporous silica nanoparticles deliver DNA and chemicals into plants. , 2007, Nature nanotechnology.

[487]  R. Bellamkonda,et al.  Remote triggered release of doxorubicin in tumors by synergistic application of thermosensitive liposomes and gold nanorods. , 2011, ACS nano.

[488]  J. Vacanti,et al.  Tissue engineering. , 1993, Science.

[489]  J. Pelleg Mechanical Properties of Ceramics , 2014 .

[490]  Huajian Gao,et al.  Mechanics of receptor-mediated endocytosis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[491]  H. Böttcher,et al.  Sol-Gel Carrier Systems for Controlled Drug Delivery , 1998 .

[492]  G. Wong,et al.  Synthesis and Characterization of Poly(vinylpyrrolidone)-Modified Zinc Oxide Nanoparticles , 2000 .

[493]  Taeghwan Hyeon,et al.  Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery. , 2010, Journal of the American Chemical Society.

[494]  T. Saegusa,et al.  Structure of poly(vinylpyrrolidone)-silica hybrid , 1992 .

[495]  Bruce Dunn,et al.  Sol-gel encapsulation methods for biosensors , 1994 .

[496]  Richard A. Martin,et al.  Novel sol–gel preparation of (P2O5)0.4–(CaO)0.25–(Na2O)X–(TiO2)(0.35−X) bioresorbable glasses (X = 0.05, 0.1, and 0.15) , 2015, Journal of Sol-Gel Science and Technology.

[497]  E M Carlisle,et al.  Silicon: A Possible Factor in Bone Calcification , 1970, Science.

[498]  R. Panchagnula,et al.  Peroral route: an opportunity for protein and peptide drug delivery. , 2001, Chemical reviews.

[499]  M. Catauro,et al.  Influence of the polymer amount on bioactivity and biocompatibility of SiO2/PEG hybrid materials synthesized by sol-gel technique. , 2015, Materials science & engineering. C, Materials for biological applications.

[500]  Jinhee Choi,et al.  SiO2 Nanoparticles Induced Cytotoxicity by Oxidative Stress in Human Bronchial Epithelial Cell, Beas-2B , 2011, Environmental health and toxicology.

[501]  J. Knowles,et al.  Bioactive functional materials: a perspective on phosphate-based glasses , 2009 .

[502]  N. Raman,et al.  Synthesis and structural reactivity of inorganic–organic hybrid nanocomposites – A review , 2012 .

[503]  P. Dhamelincourt,et al.  Raman spectra of oligomeric species obtained by tetraethoxysilane hydrolysis-polycondensation process , 1996 .

[504]  Aldo R Boccaccini,et al.  Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences. , 2010, Tissue engineering. Part B, Reviews.

[505]  J. Polak,et al.  Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. , 2000, Biochemical and biophysical research communications.

[506]  W. M. Heston,et al.  The Solubility of Amorphous Silica in Water , 1954 .

[507]  Robert Langer,et al.  The biocompatibility of mesoporous silicates. , 2008, Biomaterials.

[508]  Dean-Mo Liu,et al.  Structural evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films , 2000 .

[509]  T. Tateishi,et al.  Sol‐Gel Synthesis of Amorphous Calcium Phosphate and Sintering into Microporous Hydroxyapatite Bioceramics , 2005 .

[510]  L. Hench,et al.  Mechanisms of hydroxyapatite formation on porous gel-silica substrates , 1996 .

[511]  Bin Fang,et al.  Silver oxide nanowalls grown on Cu substrate as an enzymeless glucose sensor. , 2009, ACS applied materials & interfaces.

[512]  M. Vallet‐Regí,et al.  Functionalization degree of SBA-15 as key factor to modulate sodium alendronate dosage , 2008 .

[513]  N. Miyata,et al.  Apatite-forming ability and mechanical properties of PTMO-modified CaO-SiO2 hybrids prepared by sol-gel processing: effect of CaO and PTMO contents. , 2002, Biomaterials.

[514]  T. Maekawa,et al.  POLYMERIC SCAFFOLDS IN TISSUE ENGINEERING APPLICATION: A REVIEW , 2011 .

[515]  L. Ilharco,et al.  The sol-gel route to advanced silica-based materials and recent applications. , 2013, Chemical reviews.

[516]  Bengt Fadeel,et al.  Nanotoxicology: no small matter. , 2010, Nanoscale.

[517]  R. Misra,et al.  New generation of chitosan-encapsulated ZnO quantum dots loaded with drug: synthesis, characterization and in vitro drug delivery response. , 2010, Acta biomaterialia.

[518]  T. Mihaljevic,et al.  Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping , 2004, Nature Biotechnology.

[519]  S. Kistler,et al.  Coherent Expanded Aerogels and Jellies. , 1931, Nature.

[520]  T. Sugimoto,et al.  Preparation of monodisperse pseudocubic α-Fe2O3 particles from condensed ferric hydroxide gel , 1992 .

[521]  A. Oryan,et al.  Advances in injured tendon engineering with emphasis on the role of collagen implants , 2012 .

[522]  Arezou A Ghazani,et al.  Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. , 2006, Nano letters.

[523]  Feng Zhao,et al.  Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan-gelatin network composite scaffolds. , 2002, Biomaterials.

[524]  Hae-Won Kim,et al.  Membrane of hybrid chitosan-silica xerogel for guided bone regeneration. , 2009, Biomaterials.

[525]  R. Langer,et al.  Designing materials for biology and medicine , 2004, Nature.

[526]  Je-Yong Choi,et al.  Preparation of a bioactive and degradable poly(ε-caprolactone)/silica hybrid through a sol–gel method , 2002 .

[527]  K. Gross,et al.  Critical ageing of hydroxyapatite sol-gel solutions. , 1998, Biomaterials.

[528]  Chuanqing Zhou,et al.  Mesoporous silica-coated gold nanorods with embedded indocyanine green for dual mode X-ray CT and NIR fluorescence imaging. , 2011, Optics express.

[529]  María Vallet-Regí,et al.  Confinement and controlled release of bisphosphonates on ordered mesoporous silica-based materials. , 2006, Journal of the American Chemical Society.

[530]  Zhihui Dai,et al.  Direct electrochemistry and electrocatalysis of myoglobin immobilized on a hexagonal mesoporous silica matrix. , 2004, Analytical biochemistry.

[531]  D. Scherman,et al.  A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[532]  Julian R. Jones,et al.  Bioactivity in silica/poly(γ-glutamic acid) sol-gel hybrids through calcium chelation. , 2013, Acta biomaterialia.

[533]  L. Montagne,et al.  Phosphate speciation in Na2O–CaO–P2O5–SiO2 and Na2O–TiO2–P2O5–SiO2 glasses , 2000 .

[534]  Jean-Marie Devoisselle,et al.  Solid-State NMR Study of Ibuprofen Confined in MCM-41 Material , 2006 .

[535]  A. Palmqvist,et al.  Particle Size Control of Colloidal Suspensions of Mesostructured Silica , 2008 .

[536]  L. Miao,et al.  Fabrication, characterization and Raman study of anatase-TiO2 nanorods by a heating-sol–gel template process , 2004 .

[537]  D. Boyd,et al.  The effect of ionic dissolution products of Ca–Sr–Na–Zn–Si bioactive glass on in vitro cytocompatibility , 2010, Journal of materials science. Materials in medicine.

[538]  L. Hench,et al.  Effect of formamide additive on the chemistry of silica sol-gels II. Gel structure , 1988 .

[539]  R G Geesink,et al.  Hydroxyapatite-coated total hip prostheses. Two-year clinical and roentgenographic results of 100 cases. , 1990, Clinical orthopaedics and related research.

[540]  R. Geesink Hydroxyapatite-coated total hip protheses : two-year clinical roentenografic results of 100 cases , 1990 .

[541]  M. K. Naskar,et al.  Synthesis of mesoporous Stöber silica nanoparticles: the effect of secondary and tertiary alkanolamines , 2014, Journal of Sol-Gel Science and Technology.

[542]  Seung-eon Kim,et al.  Preparation of bioactive glass ceramic beads with hierarchical pore structure using polymer self-assembly technique , 2009 .

[543]  K. Kuroda,et al.  The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials. , 1990 .

[544]  J. Davies,et al.  Bone Growth on Sol-Gel Calcium Phosphate Thin Films In Vitro , 1993 .

[545]  Cecilia Sahlgren,et al.  Multifunctional mesoporous silica nanoparticles for combined therapeutic, diagnostic and targeted action in cancer treatment. , 2011, Current drug targets.

[546]  Alexis M Pietak,et al.  Magnesium and its alloys as orthopedic biomaterials: a review. , 2006, Biomaterials.

[547]  Ana B. Descalzo,et al.  Rational design of a chromo- and fluorogenic hybrid chemosensor material for the detection of long-chain carboxylates. , 2005, Journal of the American Chemical Society.

[548]  Shunsuke Yamamoto,et al.  Preparation of polymer-silicate hybrid maerials bearing silanol groups and the apatite formation on/in the hybrid materials , 1998 .

[549]  Chaoyang Wang,et al.  Combination of adsorption by porous CaCO3 microparticles and encapsulation by polyelectrolyte multilayer films for sustained drug delivery. , 2006, International journal of pharmaceutics.

[550]  M. Edén The split network analysis for exploring composition-structure correlations in multi-component glasses : I. Rationalizing bioactivity-composition trends of bioglasses , 2011 .

[551]  R. Hook A 29Si NMR study of the sol-gel polymerisation rates of substituted ethoxysilanes , 1996 .

[552]  D. Greenspan,et al.  Processing and properties of sol-gel bioactive glasses. , 2000, Journal of biomedical materials research.

[553]  Monty Liong,et al.  Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. , 2007, Small.

[554]  V. Torchilin Recent advances with liposomes as pharmaceutical carriers , 2005, Nature Reviews Drug Discovery.

[555]  María Vallet-Regí,et al.  Mesoporous Materials for Drug Delivery , 2008 .

[556]  Junzo Tanaka,et al.  The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. , 2005, Biomaterials.

[557]  P. Judeinstein,et al.  Hybrid organic–inorganic materials: a land of multidisciplinarity , 1996 .

[558]  Chen-Sheng Yeh,et al.  Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging. , 2010, Angewandte Chemie.

[559]  María Vallet-Regí,et al.  Drug delivery from ordered mesoporous matrices , 2009, Expert opinion on drug delivery.

[560]  N. Miyata,et al.  Bioactivity and mechanical properties of PDMS-modified CaO-SiO(2)-TiO(2) hybrids prepared by sol-gel process. , 2000, Journal of biomedical materials research.

[561]  Larry L. Hench,et al.  Challenges for bioceramks in the 21st century , 2005 .

[562]  Zongxi Li,et al.  Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. , 2010, ACS nano.

[563]  J. Kubicki,et al.  Silicate glass and mineral dissolution: calculated reaction paths and activation energies for hydrolysis of a q3 si by H3O+ using ab initio methods. , 2006, The journal of physical chemistry. A.

[564]  Kyung-Hwa Yoo,et al.  Multifunctional nanoparticles for combined doxorubicin and photothermal treatments. , 2009, ACS nano.

[565]  Bénédicte Lebeau,et al.  Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. , 2002, Chemical reviews.

[566]  Bruce Dunn,et al.  Photochemical Enzyme Co-Factor Regeneration: Towards Continuous Glutamate Monitoring with a Sol-Gel Optical Biosensor , 2002 .

[567]  A. Avenell,et al.  Trace Element Nutrition and Bone Metabolism , 1992, Nutrition Research Reviews.

[568]  Fumin Wang,et al.  Preparation of TiO2 nanocrystalline with 3–5 nm and application for dye-sensitized solar cell , 2006 .

[569]  Joseph P Vacanti,et al.  In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold. , 2004, Tissue engineering.

[570]  Richard M Day,et al.  Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis in vitro. , 2005, Tissue engineering.

[571]  K. Okuyama,et al.  Synthesis of spherical mesoporous silica nanoparticles with nanometer-size controllable pores and outer diameters , 2009 .

[572]  Yunhui Huang,et al.  High-performance porous nanoscaled LiMn2O4 prepared by polymer-assisted sol–gel method , 2013 .

[573]  U. Hoppe A structural model for phosphate glasses , 1996 .

[574]  姜鹏,et al.  Hierarchically porous bioactive glass scaffolds synthesized with a PUF and P123 cotemplated approach , 2007 .

[575]  M. Vallet‐Regí,et al.  Effect of magnesium content on the in vitro bioactivity of CaO-MgO-SiO2-P2O5 sol-gel glasses , 1999 .