A distributed algorithm to maintain and repair the trail networks of arboreal ants

We study how the arboreal turtle ant (Cephalotes goniodontus) solves a fundamental computing problem: maintaining a trail network and finding alternative paths to route around broken links in the network. Turtle ants form a routing backbone of foraging trails linking several nests and temporary food sources. This species travels only in the trees, so their foraging trails are constrained to lie on a natural graph formed by overlapping branches and vines in the tangled canopy. Links between branches, however, can be ephemeral, easily destroyed by wind, rain, or animal movements. Here we report a biologically feasible distributed algorithm, parameterized using field data, that can plausibly describe how turtle ants maintain the routing backbone and find alternative paths to circumvent broken links in the backbone. We validate the ability of this probabilistic algorithm to circumvent simulated breaks in synthetic and real-world networks, and we derive an analytic explanation for why certain features are crucial to improve the algorithm’s success. Our proposed algorithm uses fewer computational resources than common distributed graph search algorithms, and thus may be useful in other domains, such as for swarm computing or for coordinating molecular robots.

[1]  Elva J H Robinson,et al.  An agent-based model to investigate the roles of attractive and repellent pheromones in ant decision making during foraging. , 2008, Journal of theoretical biology.

[2]  H. Augustin,et al.  Mechanisms of Vessel Pruning and Regression. , 2015, Developmental cell.

[3]  Marco Dorigo,et al.  Distributed Optimization by Ant Colonies , 1992 .

[4]  Balaji Prabhakar,et al.  The Regulation of Ant Colony Foraging Activity without Spatial Information , 2012, PLoS Comput. Biol..

[5]  Eliseo Ferrante,et al.  Swarm robotics: a review from the swarm engineering perspective , 2013, Swarm Intelligence.

[6]  Éva Tardos,et al.  Algorithm design , 2005 .

[7]  Franz Merkl,et al.  Linearly edge-reinforced random walks , 2006, math/0608220.

[8]  J. Deneubourg,et al.  Probabilistic behaviour in ants: A strategy of errors? , 1983 .

[9]  Deborah M. Gordon,et al.  The expandable network of ant exploration , 1995, Animal Behaviour.

[10]  Tanya Latty,et al.  Resilience in social insect infrastructure systems , 2016, Journal of The Royal Society Interface.

[11]  Seif Haridi,et al.  Distributed Algorithms , 1992, Lecture Notes in Computer Science.

[12]  A. Hefetz,et al.  Trail-following responses ofTapinoma simrothi (Formicidae: Dolichoderinae) to pygidial gland extracts , 1991, Insectes Sociaux.

[13]  F. Varela,et al.  Toward a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life , 1992 .

[14]  D. Freedman,et al.  De Finetti's Theorem for Markov Chains , 1980 .

[15]  Ziv Bar-Joseph,et al.  Distributed information processing in biological and computational systems , 2014, Commun. ACM.

[16]  J. Deneubourg,et al.  The blind leading the blind: Modeling chemically mediated army ant raid patterns , 1989, Journal of Insect Behavior.

[17]  Thomas Stützle,et al.  Iterated Ants: An Experimental Study for the Quadratic Assignment Problem , 2006, ANTS Workshop.

[18]  Guy Theraulaz,et al.  Path selection and foraging efficiency in Argentine ant transport networks , 2009, Behavioral Ecology and Sociobiology.

[19]  Jean-Sébastien Sereni,et al.  Collaborative search on the plane without communication , 2012, PODC '12.

[20]  S. D. Eneubourg Pheromone trail decay rates on different substrates in the Pharaoh’s ant, Monomorium pharaonis , 2003 .

[21]  Pierre A. Humblet,et al.  Another adaptive distributed shortest path algorithm , 1991, IEEE Trans. Commun..

[22]  Ziv Bar-Joseph,et al.  Decreasing-Rate Pruning Optimizes the Construction of Efficient and Robust Distributed Networks , 2015, PLoS Comput. Biol..

[23]  Radia J. Perlman,et al.  An algorithm for distributed computation of a spanningtree in an extended LAN , 1985, SIGCOMM '85.

[24]  Deborah M Gordon,et al.  Local Regulation of Trail Networks of the Arboreal Turtle Ant, Cephalotes goniodontus , 2017, The American Naturalist.

[25]  Andrzej Pelc,et al.  Graph exploration by a finite automaton , 2005, Theor. Comput. Sci..

[26]  Christian A. Yates,et al.  A stochastic model of ant trail following with two pheromones , 2015, 1508.06816.

[27]  Roberto Montemanni,et al.  Coupling ant colony systems with strong local searches , 2012, Eur. J. Oper. Res..

[28]  F. Ratnieks,et al.  Trail pheromones: an integrative view of their role in social insect colony organization. , 2015, Annual review of entomology.

[29]  Dirk Helbing,et al.  Optimal traffic organization in ants under crowded conditions , 2004, Nature.

[30]  F. Ratnieks,et al.  Longevity and detection of persistent foraging trails in Pharaoh's ants, Monomorium pharaonis (L.) , 2006, Animal Behaviour.

[31]  Mike Holcombe,et al.  Insect communication: ‘No entry’ signal in ant foraging , 2005, Nature.

[32]  D. Cherix,et al.  Spatial organisation of a polycalic system in Formica (Coptoformica) exsecta Nyl. (Hymenoptera: Formicidae). , 1980 .

[33]  Anna Dornhaus,et al.  The function of polydomy: the ant Crematogaster torosa preferentially forms new nests near food sources and fortifies outstations , 2011, Behavioral Ecology and Sociobiology.

[34]  Jean-Louis Deneubourg,et al.  Random behaviour, amplification processes and number of participants: how they contribute to the foraging properties of ants , 1986 .

[35]  T. Langner Towards More Realistic ANTS , 2014 .

[36]  Marco Dorigo,et al.  Ant colony optimization theory: A survey , 2005, Theor. Comput. Sci..

[37]  Christoph Lenzen The Power of Pheromones in Ant Foraging , 2013 .

[38]  Toshiyuki Nakagaki,et al.  Structure and formation of ant transportation networks , 2011, Journal of The Royal Society Interface.

[39]  Deborah M. Gordon,et al.  The Dynamics of Foraging Trails in the Tropical Arboreal Ant Cephalotes goniodontus , 2012, PloS one.

[40]  K. Mani Chandy,et al.  Distributed computation on graphs: shortest path algorithms , 1982, CACM.

[41]  J. Deneubourg,et al.  Trail-laying behaviour during exploratory recruitment in the Argentine ant: Iridomyrmex humilis (Mayr) , 1989 .

[42]  Deborah M. Gordon,et al.  The effect of individual variation on the structure and function of interaction networks in harvester ants , 2011, Journal of The Royal Society Interface.

[43]  David J. T. Sumpter,et al.  Individual Rules for Trail Pattern Formation in Argentine Ants (Linepithema humile) , 2012, PLoS Comput. Biol..

[44]  Hans G. Othmer,et al.  Aggregation, Blowup, and Collapse: The ABC's of Taxis in Reinforced Random Walks , 1997, SIAM J. Appl. Math..

[45]  Shigeyoshi Tsutsui Ant Colony Optimization with Cunning Ants , 2007 .

[46]  Simon Garnier,et al.  Army ants dynamically adjust living bridges in response to a cost–benefit trade-off , 2015, Proceedings of the National Academy of Sciences.

[47]  B. Davis,et al.  Reinforced random walk , 1990 .

[48]  Jukka Suomela,et al.  Survey of local algorithms , 2013, CSUR.

[49]  Noga Alon,et al.  Beeping a maximal independent set , 2011, Distributed Computing.

[50]  A. Stierle,et al.  Designing Collective Behavior in a Termite-Inspired Robot Construction Team , 2014, Science.

[51]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[52]  Evangelos Kranakis,et al.  Memoryless search algorithms in a network with faulty advice , 2008, Theor. Comput. Sci..

[53]  A. Crespi,et al.  Tracking Individuals Shows Spatial Fidelity Is a Key Regulator of Ant Social Organization , 2013, Science.

[54]  Melanie E. Moses,et al.  Beyond pheromones: evolving error-tolerant, flexible, and scalable ant-inspired robot swarms , 2015, Swarm Intelligence.

[55]  Deborah M. Gordon,et al.  Fast and Flexible: Argentine Ants Recruit from Nearby Trails , 2013, PloS one.

[56]  Israel A. Wagner,et al.  Efficiently searching a graph by a smell-oriented vertex process , 2004, Annals of Mathematics and Artificial Intelligence.

[57]  A. Tero,et al.  Rules for Biologically Inspired Adaptive Network Design , 2010, Science.

[58]  Mike Holcombe,et al.  Coupled computational simulation and empirical research into the foraging system of Pharaoh's ant (Monomorium pharaonis). , 2004, Bio Systems.

[59]  Christoph Grüter,et al.  Negative feedback in ants: crowding results in less trail pheromone deposition , 2013, Journal of The Royal Society Interface.

[60]  P Bourgine,et al.  Towards a Practice of Autonomous Systems , 1992 .

[61]  Pedro López,et al.  Deterministic versus Adaptive Routing in Fat-Trees , 2007, 2007 IEEE International Parallel and Distributed Processing Symposium.

[62]  D. Sumpter,et al.  Local cost minimization in ant transport networks: from small-scale data to large-scale trade-offs , 2015, Journal of The Royal Society Interface.

[63]  Erik Winfree,et al.  Molecular robots guided by prescriptive landscapes , 2010, Nature.

[64]  Adrian Kosowski,et al.  A locally-blazed ant trail achieves efficient collective navigation despite limited information , 2016, eLife.

[65]  D. Sumpter,et al.  From nonlinearity to optimality: pheromone trail foraging by ants , 2003, Animal Behaviour.

[66]  Deborah M Gordon,et al.  The Evolution of the Algorithms for Collective Behavior. , 2016, Cell systems.

[67]  Jérôme Kunegis,et al.  KONECT: the Koblenz network collection , 2013, WWW.

[68]  Thomas Stützle,et al.  Ant Colony Optimization: A Component-Wise Overview , 2018, Handbook of Heuristics.

[69]  Henrik Renlund,et al.  Reinforced Random Walk , 2005 .

[70]  M. Holcombe,et al.  Decay rates of attractive and repellent pheromones in an ant foraging trail network , 2008, Insectes Sociaux.