A Three Dimensional Heterogeneous Coarse Mesh Transport Method for Reactor Calculations

[1]  K. Smith,et al.  ASSEMBLY HOMOGENIZATION TECHNIQUES FOR LIGHT WATER REACTOR ANALYSIS , 1986 .

[2]  M. J. Abbate,et al.  Methods of Steady-State Reactor Physics in Nuclear Design , 1983 .

[3]  Kord Sterling Smith,et al.  Spatial homogenization methods for light water reactor analysis , 1980 .

[4]  R.J.J. Stamm'ler,et al.  The heterogeneous response method in slab geometry , 1984 .

[5]  P. Mohanakrishnan Angular current approximations in neutron transport calculations using interface currents—A review , 1981 .

[6]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[7]  C. B. Carrico,et al.  VARIANT - variational anisotropic nodal transport , 1995 .

[8]  Norman J. McCormick,et al.  A Review of Neutron Transport Approximations , 1982 .

[9]  Farzad Rahnema,et al.  The Incident Flux Response Expansion Method for Heterogeneous Coarse Mesh Transport Problems , 2006 .

[10]  VARIATIONAL PRINCIPLES FOR STEADY-STATE NEUTRON FLUX FUNCTIONALS , 1998 .

[11]  Benoit Forget,et al.  Comet solutions to the 3-D C5G7 MOX benchmark problem , 2006 .

[12]  K. Ishii,et al.  A New Direct Calculation Method of Response Matrices Using a Monte Carlo Calculation , 1999 .

[13]  Edward W. Larsen Neutron transport and diffusion in inhomogeneous media. II , 1976 .

[14]  William Et.Al Hines,et al.  Probability and Statistics in Engineering , 2003 .

[15]  李幼升,et al.  Ph , 1989 .

[16]  J. F. Briesmeister MCNP-A General Monte Carlo N-Particle Transport Code , 1993 .

[17]  Edward W. Larsen,et al.  Neutron transport and diffusion in inhomogeneous media. I , 1975 .

[18]  C. Neuman,et al.  Discrete (Legendre) orthogonal polynomials—a survey , 1974 .

[19]  R. D. Lawrence PROGRESS IN NODAL METHODS FOR THE SOLUTION OF THE NEUTRON DIFFUSION AND TRANSPORT EQUATIONS , 1986 .

[20]  G. I. Bell,et al.  Nuclear Reactor Theory , 1952 .

[21]  G. C. Pomraning Near-infinite-medium solutions of the equation of transfer , 1990 .

[22]  F. Rahnema,et al.  A Heterogeneous Coarse Mesh Transport Method , 2003 .

[23]  IMPROVED MONTE CARLO ADAPTATION OF THE HETEROGENEOUS COARSE-MESH TRANSPORT METHOD , 2005 .

[24]  A heterogeneous coarse mesh solution for the 2-D NEA C5G7 mox benchmark problem , 2004 .

[25]  Rizwan-uddin,et al.  Systematic homogenization and self-consistent flux and pin power reconstruction for nodal diffusion methods. I: Diffusion equation-based theory , 1995 .

[26]  E. Lewis,et al.  Benchmark specification for Deterministic 2-D/3-D MOX fuel assembly transport calculations without spatial homogenisation (C5G7 MOX) , 2001 .

[27]  G. Palmiotti,et al.  A Finite Subelement Generalization of the Variational Nodal Method , 2003 .

[28]  E. Lewis,et al.  Computational Methods of Neutron Transport , 1993 .

[29]  F. Rahnema,et al.  AN INTRA-NODAL FLUX EXPANSION FOR A HETEROGENEOUS COARSE MESH DISCRETE ORDINATES METHOD , 2003 .

[30]  Rizwan-uddin,et al.  Systematic homogenization and self-consistent flux and pin power reconstruction for nodal diffusion methods: Part II: Transport equation based theory , 1997 .

[31]  P. K. Suetin Orthogonal Polynomials in Two Variables , 1999 .

[32]  C. B. Carrico,et al.  VARIANT: VARIational Anisotropic Nodal Transport for Multidimensional Cartesian and Hexagonal Geometry Calculation , 1995 .

[33]  J. Rathkopf,et al.  THE FINITE ELEMENT RESPONSE MATRIX METHOD FOR THE SOLUTION OF THE NEUTRON TRANSPORT EQUATION , 1986 .

[34]  Toshikazu Takeda,et al.  3-D Neutron Transport Benchmarks , 1991 .

[35]  Application of a Heterogeneous Coarse Mesh Transport Method to a MOX Benchmark Problem , 2004 .