AUTHOR'S ACCEPTED DRAFT OF PAPER PRIOR TO COPY-EDITING AND TYPESETTING PLEASE DO NOT DISTRIBUTE REFER TO FINAL VERSION IN JGR WHEN AVAILABLE

28 The spaceborne Advanced Very High Resolution Radiometer (AVHRR) sensor data record is 29 approaching 40 years, providing a crucial asset for studying long-term trends of aerosol 30 properties regionally and globally. However, due to limitations of its channels’ information 31 content, aerosol optical depth (AOD) data from AVHRR over land are still largely lacking. In 32 this paper, we describe a new physics-based algorithm to retrieve aerosol loading over both land 33 and ocean from AVHRR for the first time. The over-land algorithm is an extension of our Sea34 viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate Resolution Imaging 35 Spectroradiometer (MODIS) Deep Blue algorithm, while a simplified version of our Satellite 36 Ocean Aerosol Retrieval (SOAR) algorithm is used over ocean. We compare retrieved AVHRR 37 AOD with that from MODIS on a daily and seasonal basis, and find in general good agreement 38 between the two. For the satellites with equatorial crossing times within two hours of solar noon, 39 the spatial coverage of the AVHRR aerosol product is comparable to that of MODIS, except over 40 very bright arid regions (such as the Sahara), where the underlying surface reflectance at 630 nm 41 reaches the critical surface reflectance. Based upon comparisons of the AVHRR AOD against 42 Aerosol Robotic Network (AERONET) data, preliminary results indicate that the expected error 43 confidence interval envelope is around ±(0.03+15%) over ocean and ±(0.05+25%) over land for 44 this first version of the AVHRR aerosol products. Consequently, these new AVHRR aerosol 45 products can contribute important building blocks for constructing a consistent long-term data 46 record for climate studies. 47

[1]  Jin Huang,et al.  Enhanced Deep Blue aerosol retrieval algorithm: The second generation , 2013 .

[2]  E. Vermote,et al.  Absolute calibration of AVHRR visible and near-infrared channels using ocean and cloud views , 1995 .

[3]  Alexander Smirnov,et al.  Cloud-Screening and Quality Control Algorithms for the AERONET Database , 2000 .

[4]  Alexander Smirnov,et al.  SeaWiFS Ocean Aerosol Retrieval (SOAR): Algorithm, validation, and comparison with other data sets , 2012 .

[5]  N. C. Hsu,et al.  Evaluation of NASA Deep Blue/SOAR aerosol retrieval algorithms applied to AVHRR measurements , 2017, Journal of geophysical research. Atmospheres : JGR.

[6]  Alexander Smirnov,et al.  A Pure Marine Aerosol Model, for Use in Remote Sensing Applications , 2012 .

[7]  Robert J. D. Spurr,et al.  VLIDORT: A linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media , 2006 .

[8]  N. C. Hsu,et al.  AERONET‐Based Nonspherical Dust Optical Models and Effects on the VIIRS Deep Blue/SOAR Over Water Aerosol Product , 2017, Journal of geophysical research. Atmospheres : JGR.

[9]  Andrew M. Sayer,et al.  Validation and uncertainty estimates for MODIS Collection 6 “Deep Blue” aerosol data , 2013 .

[10]  Yong Xue,et al.  Retrieval of aerosol optical depth over land surfaces from AVHRR data , 2013 .

[11]  A. Lacis,et al.  Aerosol retrievals over the ocean by use of channels 1 and 2 AVHRR data: sensitivity analysis and preliminary results. , 1999, Applied optics.

[12]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[13]  Ranga B. Myneni,et al.  Effect of orbital drift and sensor changes on the time series of AVHRR vegetation index data , 2000, IEEE Trans. Geosci. Remote. Sens..

[14]  Molero Remote Sensing of Aerosols , 2019, Atmosphere.

[15]  Alexander Smirnov,et al.  Regional evaluation of an advanced very high resolution radiometer (AVHRR) two‐channel aerosol retrieval algorithm , 2004 .

[16]  Alexander Ignatov,et al.  Aerosol Retrievals from Individual AVHRR Channels. Part I: Retrieval Algorithm and Transition from Dave to 6S Radiative Transfer Model , 2002 .

[17]  Patrick Minnis,et al.  A Consistent AVHRR Visible Calibration Record Based on Multiple Methods Applicable for the NOAA Degrading Orbits. Part I: Methodology , 2016 .

[18]  Alexander Ignatov,et al.  Operational Aerosol Observations (AEROBS) from AVHRR/3 On Board NOAA-KLM Satellites , 2004 .

[19]  Alexander Smirnov,et al.  Aeronet's Version 2.0 quality assurance criteria , 2006, SPIE Asia-Pacific Remote Sensing.

[20]  Andrew K. Heidinger,et al.  Operational calibration of the Advanced Very High Resolution Radiometer (AVHRR) visible and near-infrared channels , 2010 .

[21]  D. Tanré,et al.  Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances , 1997 .

[22]  M. Mishchenko,et al.  Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids , 1997 .

[23]  Alexander Smirnov,et al.  Development of a Global Validation Package for Satellite Oceanic Aerosol Optical Thickness Retrieval Based on AERONET Observations and Its Application to NOAA/NESDIS Operational Aerosol Retrievals. , 2002 .

[24]  M. Mishchenko,et al.  Comparison of Saharan dust aerosol optical depths retrieved using aircraft mounted Pyranometers and 2‐channel AVHRR algorithms , 2001 .

[25]  Yoram J. Kaufman,et al.  Evaluation of the MODIS Retrievals of Dust Aerosol over the Ocean during PRIDE , 2002 .

[26]  Michael D. King,et al.  Aerosol properties over bright-reflecting source regions , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[27]  C. Tucker Red and photographic infrared linear combinations for monitoring vegetation , 1979 .

[28]  Thomas F. Eck,et al.  GOCI Yonsei Aerosol Retrieval (YAER) algorithm and validation during the DRAGON-NE Asia 2012 campaign , 2015 .

[29]  Felix C. Seidel,et al.  Critical surface albedo and its implications to aerosol remote sensing , 2011 .

[30]  Hongqing Liu,et al.  An enhanced VIIRS aerosol optical thickness (AOT) retrieval algorithm over land using a global surface reflectance ratio database , 2016 .

[31]  M. Mishchenko,et al.  Global validation of two-channel AVHRR aerosol optical thickness retrievals over the oceans , 2004 .

[32]  Damien Sulla-Menashe,et al.  MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets , 2010 .

[33]  Xiangao Xia,et al.  Evaluation of the Moderate Resolution Imaging Spectroradiometer aerosol products at two Aerosol Robotic Network stations in China , 2007 .

[34]  Larry L. Stowe,et al.  Remote sensing of aerosols over the oceans using AVHRR data Theory, practice and applications , 1989 .

[35]  Alexander Smirnov,et al.  Maritime aerosol network as a component of AERONET - first results and comparison with global aerosol models and satellite retrievals , 2011 .

[36]  Edwin W. Pak,et al.  An extended AVHRR 8‐km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data , 2005 .

[37]  L. Remer,et al.  The Collection 6 MODIS aerosol products over land and ocean , 2013 .

[38]  Larry L. Stowe,et al.  Evaluating the Potential for Retrieving Aerosol Optical Depth over Land from AVHRR Pathfinder Atmosphere Data , 2002 .

[39]  A. Hauser,et al.  Validation of a modified AVHRR aerosol optical depth retrieval algorithm over Central Europe , 2010 .

[40]  B. Holben,et al.  Estimating Marine Aerosol Particle Volume and Number from Maritime Aerosol Network Data , 2012 .

[41]  A. Ignatov,et al.  Aerosol Retrievals from Individual Avhrr Channels: Ii. Quality Control, Probability Distribution Functions, Information Content, and Consistency Checks of Retrievals , 2001 .