Control of neurotransmitter release: From Ca2+ to voltage dependent G-protein coupled receptors

This review discusses two theories that try to explain mechanisms of control of neurotransmitter release in fast synapses: the Ca2+ hypothesis and the Ca2+ voltage hypothesis. The review summarizes experimental results that are incompatible with predictions from the Ca2+ hypothesis and concludes that Ca2+ is involved in the control of the amount of release but not in the control of the time course of evoked release, i.e., initiation and termination of evoked release. Results summarizing direct effects of changes in membrane potential on the release machinery are then presented. These changes in membrane potential affect the affinity (for the transmitter) of presynaptic autoinhibitory G-protein coupled receptors (GPCRs). The voltage dependence of these GPCRs and their pivotal role in determining the time course of evoked release is discussed.

[1]  I. Parnas,et al.  The Metabotropic Glutamate G-protein-coupled Receptors mGluR3 and mGluR1a Are Voltage-sensitive* , 2006, Journal of Biological Chemistry.

[2]  F. Dodge,et al.  Co‐operative action of calcium ions in transmitter release at the neuromuscular junction , 1967, The Journal of physiology.

[3]  I. Parnas,et al.  Influence of depolarizing pulse duration on the time course of transmitter release in lobster. , 1987, The Journal of physiology.

[4]  I. Forsythe,et al.  Presynaptic Calcium Current Modulation by a Metabotropic Glutamate Receptor , 1996, Science.

[5]  Y. Kurachi,et al.  G protein regulation of potassium ion channels. , 1998, Pharmacological reviews.

[6]  I. Parnas,et al.  Differential block at high frequency of branches of a single axon innervating two muscles. , 1972, Journal of neurophysiology.

[7]  R. Zucker,et al.  A General Model of Synaptic Transmission and Short-Term Plasticity , 2009, Neuron.

[8]  Thomas C. Südhof,et al.  Understanding Synapses: Past, Present, and Future , 2008, Neuron.

[9]  S. Alford,et al.  Neurotransmitter release evoked by nerve impulses without Ca2+ entry through Ca2+ channels in frog motor nerve endings. , 1995, The Journal of physiology.

[10]  Bernard Katz,et al.  Transmitter leakage from motor nerve endings , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[11]  G. Zamponi,et al.  Differential modulation of N‐type α1B and P/Q‐type α1A calcium channels by different G protein β subunit isoforms , 2000, The Journal of physiology.

[12]  B. Katz,et al.  The role of calcium in neuromuscular facilitation , 1968, The Journal of physiology.

[13]  I. Kaiserman,et al.  Ion channels in presynaptic nerve terminals and control of transmitter release. , 1999, Physiological reviews.

[14]  G. Augustine,et al.  Local Calcium Signaling in Neurons , 2003, Neuron.

[15]  I. Parnas,et al.  Neurotransmitter release and its facilitation in crayfish , 1982, Pflügers Archiv.

[16]  T. Südhof The synaptic vesicle cycle , 2004 .

[17]  B. Sakmann,et al.  Calcium Secretion Coupling at Calyx of Held Governed by Nonuniform Channel–Vesicle Topography , 2002, The Journal of Neuroscience.

[18]  T. Soong,et al.  Determinants of the G protein-dependent opioid modulation of neuronal calcium channels. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[19]  H. Parnas,et al.  Depolarization Affects the Binding Properties of Muscarinic Acetylcholine Receptors and Their Interaction with Proteins of the Exocytic Apparatus* , 1999, The Journal of Biological Chemistry.

[20]  S. Muchnik,et al.  Presynaptic inhibition of spontaneous acetylcholine release induced by adenosine at the mouse neuromuscular junction , 2004, British journal of pharmacology.

[21]  Jean-Loup Bascands,et al.  A Novel Protein-Protein Interaction between a G Protein-coupled Receptor and the Phosphatase SHP-2 Is Involved in Bradykinin-induced Inhibition of Cell Proliferation* , 2002, The Journal of Biological Chemistry.

[22]  L. Segel,et al.  Neurotransmitter discharge and postsynaptic rise times. , 1996, Biophysical journal.

[23]  D. Jenkinson The nature of the antagonism between calcium and magnesium ions at the neuromuscular junction , 1957, The Journal of physiology.

[24]  A. Gilman,et al.  G proteins: transducers of receptor-generated signals. , 1987, Annual review of biochemistry.

[25]  D. Smith,et al.  Autoreceptor‐mediated purinergic and cholinergic inhibition of motor nerve terminal calcium currents in the rat. , 1991, The Journal of physiology.

[26]  S. Alford,et al.  G Protein βγ Subunit-Mediated Presynaptic Inhibition: Regulation of Exocytotic Fusion Downstream of Ca2+ Entry , 2001, Science.

[27]  W. Yamada,et al.  Time course of transmitter release calculated from simulations of a calcium diffusion model. , 1992, Biophysical journal.

[28]  T. Südhof,et al.  Membrane Fusion: Grappling with SNARE and SM Proteins , 2009, Science.

[29]  E. Yoon,et al.  G protein betagamma directly regulates SNARE protein fusion machinery for secretory granule exocytosis. , 2005, Nature neuroscience.

[30]  I. Parnas,et al.  Use of knockout mice reveals involvement of M2-muscarinic receptors in control of the kinetics of acetylcholine release. , 2003, Journal of neurophysiology.

[31]  L. Niels Cornelisse,et al.  Doc2b Is a High-affinity Ca 2+ Sensor for Spontaneous Neurotransmitter Release , 2022 .

[32]  E. F. Stanley Decline in calcium cooperativity as the basis of facilitation at the squid giant synapse , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  D W Tank,et al.  A quantitative measurement of the dependence of short-term synaptic enhancement on presynaptic residual calcium , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  J. Nakai,et al.  Location of a region of the muscarinic acetylcholine receptor involved in selective effector coupling , 1988, FEBS letters.

[35]  Felix Felmy,et al.  The timing of phasic transmitter release is Ca2+-dependent and lacks a direct influence of presynaptic membrane potential , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[36]  H. Parnas,et al.  Voltage‐Dependent Interaction Between the Muscarinic ACh Receptor and Proteins of the Exocytic Machinery , 1997, The Journal of physiology.

[37]  R S Zucker,et al.  Calcium in motor nerve terminals associated with posttetanic potentiation , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  P W Gage,et al.  Phasic secretion of acetylcholine at a mammalian neuromuscular junction. , 1980, The Journal of physiology.

[39]  A. Marty,et al.  Presynaptic Effects of NMDA in Cerebellar Purkinje Cells and Interneurons , 1999, The Journal of Neuroscience.

[40]  I. Parnas,et al.  Glutamate Depresses Release by Activating Non‐conventional Glutamate Receptors at Crayfish Nerve Terminals , 1996, The European journal of neuroscience.

[41]  S. Alford,et al.  G protein betagamma subunit-mediated presynaptic inhibition: regulation of exocytotic fusion downstream of Ca2+ entry. , 2001, Science.

[42]  E. Neher,et al.  Presynaptic calcium and control of vesicle fusion , 2005, Current Opinion in Neurobiology.

[43]  G. Ellis‐Davies,et al.  Calcium Sensitivity of Neurotransmitter Release Differs at Phasic and Tonic Synapses , 2005, The Journal of Neuroscience.

[44]  J. Dudel Depolarization amplitude and Ca2+‐inflow control the time course of quantal releases at murine motor nerve terminals , 2009, The European journal of neuroscience.

[45]  Bert Sakmann,et al.  Control of synaptic strength and timing by the release-site Ca2+ signal , 2005, Nature Neuroscience.

[46]  Sanjiv V. Bhave,et al.  Dissociation between intracellular Ca2+ and modulation of [3H]noradrenaline release in chick sympathetic neurons. , 1991, The Journal of physiology.

[47]  I. Parnas,et al.  Presynaptic M2 muscarinic receptors are involved in controlling the kinetics of ACh release at the frog neuromuscular junction , 2001 .

[48]  T. Südhof,et al.  Synaptotagmin-1, -2, and -9: Ca2+ Sensors for Fast Release that Specify Distinct Presynaptic Properties in Subsets of Neurons , 2007, Neuron.

[49]  G. Ellis‐Davies,et al.  Caged compounds: photorelease technology for control of cellular chemistry and physiology , 2007, Nature Methods.

[50]  I. Parnas,et al.  Membrane depolarization evokes neurotransmitter release in the absence of calcium entry , 1989, Nature.

[51]  N. Dascal Signalling via the G protein-activated K+ channels. , 1997, Cellular signalling.

[52]  S. Langer,et al.  Presynaptic receptors , 1978, Nature.

[53]  M. Santafé,et al.  Muscarinic autoreceptors modulate transmitter release through protein kinase C and protein kinase A in the rat motor nerve terminal , 2006, The European journal of neuroscience.

[54]  A. Davison Basic Neurochemistry: Molecular, Cellular, and Medical Aspects , 1989 .

[55]  F Bezanilla,et al.  The voltage sensor in voltage-dependent ion channels. , 2000, Physiological reviews.

[56]  E. Yoon,et al.  Gβγ acts at the C terminus of SNAP-25 to mediate presynaptic inhibition , 2005, Nature Neuroscience.

[57]  S. Z. Langer,et al.  25 years since the discovery of presynaptic receptors: present knowledge and future perspectives. , 1997, Trends in pharmacological sciences.

[58]  L. Segel,et al.  "First step" negative feedback accounts for inhibition of fast neurotransmitter release. , 1997, Journal of theoretical biology.

[59]  R. Llinás,et al.  Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release. , 1985, Biophysical journal.

[60]  J. Wess,et al.  Pronounced pharmacologic deficits in M2 muscarinic acetylcholine receptor knockout mice. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[61]  H Parnas,et al.  Evaluation of the time course of neurotransmitter release from the measured PSC and MPSC. , 1991, Bulletin of mathematical biology.

[62]  M. Verhage,et al.  Presynaptic signal transduction pathways that modulate synaptic transmission , 2009, Current Opinion in Neurobiology.

[63]  H. Kilbinger,et al.  Presynaptic inhibitory muscarinic receptors modulating [3H] acetylcholine release in the rat urinary bladder. , 1986, The Journal of pharmacology and experimental therapeutics.

[64]  A. Cimenser,et al.  Determining Ca2+‐sensor binding time and its variability in evoked neurotransmitter release , 2008, The Journal of physiology.

[65]  The time course of transmitter release in mouse motor nerve terminals is differentially affected by activation of muscarinic M1 or M2 receptors , 2007, The European journal of neuroscience.

[66]  W. Catterall,et al.  Calcium Channel Regulation and Presynaptic Plasticity , 2008, Neuron.

[67]  R. Miledi Transmitter release induced by injection of calcium ions into nerve terminals , 1973, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[68]  B. Katz,et al.  The measurement of synaptic delay, and the time course of acetylcholine release at the neuromuscular junction , 1965, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[69]  G protein is coupled to presynaptic glutamate and GABA receptors in lobster neuromuscular synapse. , 1990, Journal of neurophysiology.

[70]  B. Katz,et al.  The effect of magnesium on the activity of motor nerve endings , 1954, The Journal of physiology.

[71]  H. Lodish Molecular Cell Biology , 1986 .

[72]  K. Fuxe,et al.  Voltage‐dependence of the human dopamine D2 receptor , 2008, Synapse.

[73]  M. Caulfield Muscarinic receptors--characterization, coupling and function. , 1993, Pharmacology & therapeutics.

[74]  H. Atwood Neuroscience. Gatekeeper at the synapse. , 2006, Science.

[75]  P. Saggau,et al.  Presynaptic inhibition of elicited neurotransmitter release , 1997, Trends in Neurosciences.

[76]  G. Augustine How does calcium trigger neurotransmitter release? , 2001, Current Opinion in Neurobiology.

[77]  M. Sokolovsky,et al.  Evidence for involvement of the voltage-dependent Na+ channel gating in depolarization-induced activation of G-proteins. , 1993, The Journal of biological chemistry.

[78]  V. Shahrezaei,et al.  Brevity of the Ca2+ microdomain and active zone geometry prevent Ca2+-sensor saturation for neurotransmitter release. , 2005, Journal of neurophysiology.

[79]  E. Yoon,et al.  G protein βγ directly regulates SNARE protein fusion machinery for secretory granule exocytosis , 2005, Nature Neuroscience.

[80]  R. Bertram,et al.  Ca2+ Current versus Ca2+ Channel Cooperativity of Exocytosis , 2009, The Journal of Neuroscience.

[81]  I. Parnas,et al.  Autoreceptors, membrane potential and the regulation of transmitter release , 2000, Trends in Neurosciences.

[82]  S. J. Smith,et al.  Calcium entry and transmitter release at voltage‐clamped nerve terminals of squid. , 1985, The Journal of physiology.

[83]  J. Dudel Control of quantal transmitter release at frog's motor nerve terminals , 1984, Pflügers Archiv.

[84]  J. Kauer,et al.  Presynaptic plasticity: targeted control of inhibitory networks , 2009, Current Opinion in Neurobiology.

[85]  I. Parnas,et al.  A new method for determining co-operativity in neurotransmitter release. , 1986, Journal of theoretical biology.

[86]  K. Starke,et al.  Modulation of neurotransmitter release by presynaptic autoreceptors. , 1989, Physiological reviews.

[87]  R Llinás,et al.  Relationship between presynaptic calcium current and postsynaptic potential in squid giant synapse. , 1981, Biophysical journal.

[88]  Gary Matthews,et al.  Calcium dependence of the rate of exocytosis in a synaptic terminal , 1994, Nature.

[89]  I. Parnas,et al.  Neurotransmitter release and its facilitation in crayfish , 1986, Pflügers Archiv.

[90]  N. Bowery GABAbeta Receptor Pharmacology , 1993 .

[91]  R. Schneggenburger,et al.  Presynaptic Capacitance Measurements and Ca2+ Uncaging Reveal Submillisecond Exocytosis Kinetics and Characterize the Ca2+ Sensitivity of Vesicle Pool Depletion at a Fast CNS Synapse , 2003, The Journal of Neuroscience.

[92]  H. Parnas,et al.  The chemical synapse goes electric: Ca2+- and voltage-sensitive GPCRs control neurotransmitter release , 2007, Trends in Neurosciences.

[93]  J. D. Del Castillo,et al.  The effect of calcium ions on the motor end‐plate potentials , 1952, The Journal of physiology.

[94]  J. Dudel Control of quantal transmitter release at frog's motor nerve terminals , 1984, Pflügers Archiv.

[95]  H. Parnas,et al.  Neurotransmitter release at fast synapses , 1994, The Journal of Membrane Biology.

[96]  R. Zucker Calcium- and activity-dependent synaptic plasticity , 1999, Current Opinion in Neurobiology.

[97]  J. Cooke,et al.  The role of calcium in depolarization—secretion coupling at the motor nerve terminal , 1973, The Journal of physiology.

[98]  Stephen J. Smith,et al.  Calcium ions, active zones and synaptic transmitter release , 1988, Trends in Neurosciences.

[99]  B. Sakmann,et al.  Local routes revisited: the space and time dependence of the Ca2+ signal for phasic transmitter release at the rat calyx of Held. , 2003, The Journal of physiology.

[100]  Hanna Parnas,et al.  Can the Ca2+ hypothesis and the Ca2+-voltage hypothesis for neurotransmitter release be reconciled? , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[101]  K. Fuxe,et al.  Voltage-sensitivity at the human dopamine D2S receptor is agonist-specific. , 2008, Biochemical and biophysical research communications.

[102]  I. Parnas,et al.  Presynaptic effects of muscarine on ACh release at the frog neuromuscular junction , 1999, The Journal of physiology.

[103]  Ralf Schneggenburger,et al.  Intracellular calcium dependence of transmitter release rates at a fast central synapse , 2000, Nature.

[104]  B Sakmann,et al.  Calcium sensitivity of glutamate release in a calyx-type terminal. , 2000, Science.

[105]  The actions of eserine-like compounds upon frog’s nerve-muscle preparations, and conditions in which a single shock can evoke an augmented muscular response , 1940, Proceedings of the Royal Society of London. Series B - Biological Sciences.

[106]  S. Siegelbaum,et al.  Presynaptic ionotropic receptors and the control of transmitter release. , 1999, Annual review of neuroscience.

[107]  D. Pinkel,et al.  Supporting Online Material Materials and Methods Figs. S1 and S2 Tables S1 and S2 References Combined Analog and Action Potential Coding in Hippocampal Mossy Fibers , 2022 .

[108]  I. Parnas,et al.  Effects of intra-axonal injection of Ca2+ buffers on evoked release and on facilitation in the crayfish neuromuscular junction , 1991, Neuroscience Letters.

[109]  I. Parnas,et al.  Simultaneous measurement of evoked release and [Ca2+]i in a crayfish release bouton reveals high affinity of release to Ca2+. , 1999, Journal of neurophysiology.

[110]  N. Bowery GABAB receptor pharmacology. , 1993, Annual review of pharmacology and toxicology.

[111]  M. Bear,et al.  LTP and LTD An Embarrassment of Riches , 2004, Neuron.

[112]  L. Segel,et al.  A theoretical study of calcium entry in nerve terminals, with application to neurotransmitter release. , 1981, Journal of theoretical biology.

[113]  Francisco Bezanilla,et al.  Movement of ‘gating charge’ is coupled to ligand binding in a G-protein-coupled receptor , 2006, Nature.

[114]  S. J. Smith,et al.  Calcium action in synaptic transmitter release. , 1987, Annual review of neuroscience.

[115]  Lee A. Segel,et al.  Facilitation as a tool to study the entry of calcium and the mechanism of neurotransmitter release , 1989, Progress in Neurobiology.

[116]  S. J. Smith,et al.  Calcium entry into voltage‐clamped presynaptic terminals of squid. , 1985, The Journal of physiology.

[117]  T. Bolton,et al.  Potential Synergy: Voltage-Driven Steps in Receptor-G Protein Coupling and Beyond , 2003, Science's STKE.

[118]  B. Bean Neurotransmitter inhibition of neuronal calcium currents by changes in channel voltage dependence , 1989, Nature.

[119]  鷹合 秀輝 G protein-dependent presynaptic inhibition mediated by AMPA receptors at the calyx of Held , 2005 .

[120]  H. Atwood Gatekeeper at the Synapse , 2006, Science.

[121]  B. Katz,et al.  A study of synaptic transmission in the absence of nerve impulses , 1967, The Journal of physiology.

[122]  M. Gardiner,et al.  Genetics of inherited epilepsies. , 1999, Epileptic disorders : international epilepsy journal with videotape.

[123]  Yasushi Okamura,et al.  Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor , 2005, Nature.

[124]  I. Parnas,et al.  The M2 Muscarinic G-protein-coupled Receptor Is Voltage-sensitive* , 2003, Journal of Biological Chemistry.

[125]  I. Parnas,et al.  Neurotransmitter release and its facilitation in crayfish muscle , 1983, Pflügers Archiv.

[126]  J. Ruppersberg Ion Channels in Excitable Membranes , 1996 .

[127]  The 'Ca-voltage' hypothesis for neurotransmitter release. , 1988, Biophysical chemistry.

[128]  I. S. Gurung,et al.  A role for membrane potential in regulating GPCRs? , 2008, Trends in pharmacological sciences.

[129]  I. Parnas,et al.  Partial uncoupling of neurotransmitter release from [Ca2+]i by membrane hyperpolarization. , 1999, Journal of neurophysiology.

[130]  E. Yoon,et al.  Gbetagamma acts at the C terminus of SNAP-25 to mediate presynaptic inhibition. , 2005, Nature neuroscience.

[131]  L. Segel,et al.  Theory for the feedback inhibition of fast release of neurotransmitter , 1999, Bulletin of mathematical biology.

[132]  Y. Okamura,et al.  Voltage‐sensing phosphatase: actions and potentials , 2009, The Journal of physiology.

[133]  I. Parnas,et al.  Ca2+-Independent Feedback Inhibition of Acetylcholine Release in Frog Neuromuscular Junction , 2002, The Journal of Neuroscience.

[134]  Felix Felmy,et al.  Probing the Intracellular Calcium Sensitivity of Transmitter Release during Synaptic Facilitation , 2003, Neuron.

[135]  D. McCormick,et al.  Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential , 2006, Nature.

[136]  R. Tsien,et al.  A new generation of Ca2+ indicators with greatly improved fluorescence properties. , 1985, The Journal of biological chemistry.

[137]  R Rahamimoff,et al.  A dual effect of calcium ions on neuromuscular facilitation , 1968, The Journal of physiology.

[138]  J. Pin,et al.  Pharmacology and functions of metabotropic glutamate receptors. , 1997, Annual review of pharmacology and toxicology.

[139]  E. Barrett,et al.  Calcium dependence of evoked transmitter release at very low quantal contents at the frog neuromuscular junction. , 1980, The Journal of physiology.

[140]  H Parnas,et al.  Simultaneous Measurement of Intracellular Ca2+ and Asynchronous Transmitter Release from the same Crayfish Bouton , 1997, The Journal of physiology.

[141]  Francisco Bezanilla,et al.  Ion Channels: From Conductance to Structure , 2008, Neuron.

[142]  E. F. Stanley,et al.  A unified model of presynaptic release site gating by calcium channel domains , 2005, The European journal of neuroscience.

[143]  E. M. Adler,et al.  The Calcium Signal for Transmitter Secretion from Presynaptic Nerve Terminals a , 1991, Annals of the New York Academy of Sciences.

[144]  Takeshi Sakaba,et al.  Multiple Roles of Calcium Ions in the Regulation of Neurotransmitter Release , 2008, Neuron.

[145]  R. Llinás,et al.  Presynaptic calcium currents in squid giant synapse. , 1981, Biophysical journal.

[146]  A. Dolphin,et al.  A short history of voltage‐gated calcium channels , 2006, British journal of pharmacology.

[147]  I. Parnas,et al.  Prolonged excitatory and inhibitory synaptic modulation of a bursting pacemaker neuron. , 1974, Journal of neurophysiology.