On the Justification of Plate Models

In this paper, we will consider the modelling of problems in linear elasticity on thin plates by the models of Kirchhoff–Love and Reissner–Mindlin. A fundamental investigation for the Kirchhoff plate goes back to Morgenstern (Arch. Ration. Mech. Anal. 4:145–152, 1959) and is based on the two-energies principle of Prager and Synge. This was half a century ago.We will derive the Kirchhoff–Love model based on Morgenstern’s ideas in a rigorous way (including the proper treatment of boundary conditions). Our derivation provides insights (a) into the relation of the (1,1,0)-model with the (1,1,2)-model which differs by a quadratic term in the ansatz for the third component of the displacement field and (b) into the rôle of the shear correction factor. A further advantage of the approach by the two-energies principle is that the extension to the Reissner–Mindlin plate model becomes very transparent and easy. Our study includes plates with reentrant corners with any interior opening angle <2π.

[1]  Carlos E. Kenig,et al.  The Inhomogeneous Dirichlet Problem in Lipschitz Domains , 1995 .

[2]  W. Prager,et al.  Approximations in elasticity based on the concept of function space , 1947 .

[3]  I. Babuska,et al.  THE PLATE PARADOX FOR HARD AND SOFT SIMPLE SUPPORT by , 2022 .

[4]  E. Reissner,et al.  On bending of elastic plates , 1947 .

[5]  Dietrich Braess,et al.  Shear Locking in a Plane Elasticity Problem and the Enhanced Assumed Strain Method , 2010, SIAM J. Numer. Anal..

[6]  G. Kirchhoff,et al.  Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. , 1850 .

[7]  Jens Markus Melenk,et al.  hp FEM for Reaction-Diffusion Equations I: Robust Exponential Convergence , 1998 .

[8]  Douglas N. Arnold,et al.  Derivation and Justification of Plate Models by Variational Methods , 2000 .

[9]  Douglas N. Arnold,et al.  The boundary layer for the reissner-mindlin plate model , 1990 .

[10]  Douglas N. Arnold,et al.  On the Range of Applicability of the Reissner–Mindlin and Kirchhoff–Love Plate Bending Models , 2002 .

[11]  S. Sauter,et al.  Computable estimates of the modeling error related to Kirchhoff-Love plate model , 2010 .

[12]  G. M.,et al.  A Treatise on the Mathematical Theory of Elasticity , 1906, Nature.

[13]  I. Babudka Optimal Shear Correction Factors in Hierarchical Plate Modelling by , 2022 .

[14]  I. Babuska,et al.  The plate paradox for hard and soft support , 1990 .

[15]  Martin Costabel,et al.  Boundary Integral Operators on Lipschitz Domains: Elementary Results , 1988 .

[16]  Dietrich Morgenstern,et al.  Herleitung der plattentbeorie aus der dreidimensionalen elastizitätstheorie , 1959 .

[17]  P. Erdös,et al.  Interpolation , 1953, An Introduction to Scientific, Symbolic, and Graphical Computation.

[18]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[19]  Philippe G. Ciarlet,et al.  JUSTIFICATION OF THE TWO-DIMENSIONAL LINEAR PLATE MODEL. , 1979 .

[20]  D. Braess Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .

[21]  E. Ramm,et al.  On the mathematical foundation of the (1,1,2)-platemodel , 1999 .

[22]  S. Zhang On the accuracy of Reissner–Mindlin plate model for stress boundary conditions , 2006 .

[23]  C. Schwab,et al.  A finite volume discontinuous Galerkin scheme¶for nonlinear convection–diffusion problems , 2002 .

[24]  Philippe G. Ciarlet,et al.  Mathematical elasticity. volume II, Theory of plates , 1997 .

[25]  I. Babuska,et al.  Optimal Shear Correction Factors in Hierarchical Plte Modelling , 1991 .

[26]  Dietrich Braess,et al.  Equilibrated residual error estimates are p-robust , 2009 .