Prediction under Uncertainty on a Mature Field
暂无分享,去创建一个
[1] A. O'Hagan,et al. Bayesian calibration of computer models , 2001 .
[2] Albert Tarantola,et al. Inverse problem theory - and methods for model parameter estimation , 2004 .
[3] Thomas J. Santner,et al. Design and analysis of computer experiments , 1998 .
[4] A. R. Syversveen,et al. Methods for quantifying the uncertainty of production forecasts: a comparative study , 2001, Petroleum Geoscience.
[5] Amandine Marrel. Mise en oeuvre et utilisation du métamodèle processus gaussien pour l'analyse de sensibilité de modèles numériques : application à un code de transport hydrogéologique , 2008 .
[6] T. J. Mitchell,et al. Exploratory designs for computational experiments , 1995 .
[7] Runze Li,et al. Design and Modeling for Computer Experiments , 2005 .
[8] R JonesDonald,et al. Efficient Global Optimization of Expensive Black-Box Functions , 1998 .
[9] B. Efron,et al. The Jackknife Estimate of Variance , 1981 .
[10] William J. Welch,et al. Computer experiments and global optimization , 1997 .
[11] Isabelle Zabalza-Mezghani,et al. Toward a Reliable Quantification of Uncertainty on Production Forecasts: Adaptive Experimental Designs , 2007 .
[12] Henry P. Wynn,et al. Screening, predicting, and computer experiments , 1992 .
[13] Andrea Saltelli,et al. An effective screening design for sensitivity analysis of large models , 2007, Environ. Model. Softw..
[14] A. Saltelli,et al. Importance measures in global sensitivity analysis of nonlinear models , 1996 .
[15] Daniel Busby,et al. Hierarchical adaptive experimental design for Gaussian process emulators , 2009, Reliab. Eng. Syst. Saf..
[16] Mathieu Feraille,et al. A030 UNCERTAINTY QUANTIFICATION FOR MATURE FIELD COMBINING THE BAYESIAN INVERSION FORMALISM AND EXPERIMENTAL DESIGN APPROACH , 2004 .
[17] Jon C. Helton,et al. Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models , 2009, Reliab. Eng. Syst. Saf..
[18] Donald R. Jones,et al. Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..
[19] Emmanuel Manceau,et al. Uncertainty management: From geological scenarios to production scheme optimization , 2004 .
[20] Max D. Morris,et al. Factorial sampling plans for preliminary computational experiments , 1991 .
[21] Shuangzhe Liu,et al. Global Sensitivity Analysis: The Primer by Andrea Saltelli, Marco Ratto, Terry Andres, Francesca Campolongo, Jessica Cariboni, Debora Gatelli, Michaela Saisana, Stefano Tarantola , 2008 .
[22] Richard J. Beckman,et al. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.
[23] Jeremy E. Oakley,et al. Bayesian Inference for the Uncertainty Distribution , 2000 .
[24] A. Jourdan,et al. ANALYSE STATISTIQUE ET ECHANTILLONNAGE D’EXPERIENCES SIMULEES , 2003 .
[25] Sonja Kuhnt,et al. Design and analysis of computer experiments , 2010 .
[26] Daniel Busby,et al. Uncertainty management on a reservoir workflow , 2009 .
[27] Olivier Roustant,et al. Calculations of Sobol indices for the Gaussian process metamodel , 2008, Reliab. Eng. Syst. Saf..
[28] Bertrand Iooss. Revue sur l’analyse de sensibilité globale de modèles numériques , 2011 .
[29] Thomas J. Santner,et al. The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.
[30] D Busby,et al. Adaptive design of experiments for calibration of complex simulators – An application to uncertainty quantification of a mature oil field , 2008 .
[31] Céline Scheidt. Analyse statistique d'expériences simulées : Modélisation adaptative de réponses non régulières par krigeage et plans d'expériences, Application à la quantification des incertitudes en ingénierie des réservoirs pétroliers , 2006 .
[32] M. D. McKay,et al. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .