Phylogenetic Timing of the Fish-Specific Genome Duplication Correlates with the Diversification of Teleost Fish

[1]  H. Kishino,et al.  Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea , 1989, Journal of Molecular Evolution.

[2]  Klaas Vandepoele,et al.  Major events in the genome evolution of vertebrates: paranome age and size differ considerably between ray-finned fishes and land vertebrates. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Angel Amores,et al.  Developmental roles of pufferfish Hox clusters and genome evolution in ray-fin fish. , 2003, Genome research.

[4]  John S. Conery,et al.  The evolutionary demography of duplicate genes , 2004, Journal of Structural and Functional Genomics.

[5]  G. Barlow,et al.  Fishes of the world , 2004, Environmental Biology of Fishes.

[6]  A. Meyer,et al.  Recent Advances in the (Molecular) Phylogeny of Vertebrates , 2003 .

[7]  Sudhir Kumar,et al.  Genomic clocks and evolutionary timescales. , 2003, Trends in genetics : TIG.

[8]  A. Meyer,et al.  Genome duplication, a trait shared by 22000 species of ray-finned fish. , 2003, Genome research.

[9]  Katsumi Tsukamoto,et al.  Basal actinopterygian relationships: a mitogenomic perspective on the phylogeny of the "ancient fish". , 2003, Molecular phylogenetics and evolution.

[10]  A. Meyer,et al.  Genome evolution : gene and genome duplications and the origin of novel gene functions , 2003 .

[11]  J. Inoue,et al.  Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. , 2003, Molecular phylogenetics and evolution.

[12]  J. Trowsdale,et al.  Cluster of TRIM genes in the human MHC class I region sharing the B30.2 domain. , 2003, Tissue antigens.

[13]  Paramvir S. Dehal,et al.  Whole-Genome Shotgun Assembly and Analysis of the Genome of Fugu rubripes , 2002, Science.

[14]  Axel Meyer,et al.  Dealing with saturation at the amino acid level: a case study based on anciently duplicated zebrafish genes. , 2002, Gene.

[15]  Derrick J. Zwickl,et al.  Increased taxon sampling greatly reduces phylogenetic error. , 2002, Systematic biology.

[16]  Hidetoshi Shimodaira An approximately unbiased test of phylogenetic tree selection. , 2002, Systematic biology.

[17]  Sin‐Che Lee,et al.  Phosphoglucose isomerases of hagfish, zebrafish, gray mullet, toad, and snake, with reference to the evolution of the genes in vertebrates. , 2002, Molecular biology and evolution.

[18]  Martin Vingron,et al.  TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing , 2002, Bioinform..

[19]  K. Strimmer,et al.  Inferring confidence sets of possibly misspecified gene trees , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[20]  John Shawe-Taylor,et al.  Wanda: a database of duplicated fish genes , 2002, Nucleic Acids Res..

[21]  G. Arratia THE SISTER-GROUP OF TELEOSTEI: CONSENSUS AND DISAGREEMENTS , 2001 .

[22]  Yves Van de Peer,et al.  Revisiting recent challenges to the ancient fish-specific genome duplication hypothesis , 2001, Current Biology.

[23]  Sudhir Kumar,et al.  MEGA2: molecular evolutionary genetics analysis software , 2001, Bioinform..

[24]  Y Van de Peer,et al.  Comparative genomics provides evidence for an ancient genome duplication event in fish. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[25]  J. Quattro,et al.  Evidence for a period of directional selection following gene duplication in a neurally expressed locus of triosephosphate isomerase. , 2001, Genetics.

[26]  A. Meyer,et al.  The Ghost of Selection Past: Rates of Evolution and Functional Divergence of Anciently Duplicated Genes , 2001, Journal of Molecular Evolution.

[27]  J. Lister,et al.  Duplicate mitf genes in zebrafish: complementary expression and conservation of melanogenic potential. , 2001, Developmental biology.

[28]  Kevin R. Thornton,et al.  Gene duplication and evolution. , 2001, Science.

[29]  J. Inoue,et al.  A mitogenomic perspective on the basal teleostean phylogeny: resolving higher-level relationships with longer DNA sequences. , 2001, Molecular phylogenetics and evolution.

[30]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[31]  Marc Robinson-Rechavi,et al.  An ancestral whole-genome duplication may not have been responsible for the abundance of duplicated fish genes , 2001, Current Biology.

[32]  Y Van de Peer,et al.  Genome duplication, divergent resolution and speciation. , 2001, Trends in genetics : TIG.

[33]  A. Meyer,et al.  Genome duplications and accelerated evolution of Hox genes and cluster architecture in teleost fishes , 2001 .

[34]  Y. Yan,et al.  Two sox9 genes on duplicated zebrafish chromosomes: expression of similar transcription activators in distinct sites. , 2001, Developmental biology.

[35]  M. Lardelli,et al.  Tyrosinase gene expression in zebrafish embryos , 2001, Development Genes and Evolution.

[36]  G. Glazko,et al.  Estimation of divergence times from multiprotein sequences for a few mammalian species and several distantly related organisms , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[37]  M. Miya,et al.  Use of mitogenomic information in teleostean molecular phylogenetics: a tree-based exploration under the maximum-parsimony optimality criterion. , 2000, Molecular phylogenetics and evolution.

[38]  Y. Yan,et al.  Zebrafish comparative genomics and the origins of vertebrate chromosomes. , 2000, Genome research.

[39]  M. Nishida,et al.  Molecular phylogeny of osteoglossoids: a new model for Gondwanian origin and plate tectonic transportation of the Asian arowana. , 2000, Molecular biology and evolution.

[40]  Michael Lynch,et al.  The Origin of Interspecific Genomic Incompatibility via Gene Duplication , 2000, The American Naturalist.

[41]  J. Bowles,et al.  Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. , 2000, Developmental biology.

[42]  M. Lynch,et al.  The evolutionary fate and consequences of duplicate genes. , 2000, Science.

[43]  J. McPherson,et al.  The syntenic relationship of the zebrafish and human genomes. , 2000, Genome research.

[44]  M. Kondo,et al.  A detailed linkage map of medaka, Oryzias latipes: comparative genomics and genome evolution. , 2000, Genetics.

[45]  M. Nishida,et al.  Mitochondrial Molecular Clocks and the Origin of Euteleostean Biodiversity: Familial Radiation of Perciforms May Have Predated the Cretaceous/Tertiary Boundary , 2000 .

[46]  A. Force,et al.  The probability of duplicate gene preservation by subfunctionalization. , 2000, Genetics.

[47]  A. Meyer,et al.  Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. , 1999, Current opinion in cell biology.

[48]  R. Rimini,et al.  Expression patterns of zebrafish sox11A, sox11B and sox21 , 1999, Mechanisms of Development.

[49]  S. Ohno,et al.  Gene duplication and the uniqueness of vertebrate genomes circa 1970-1999. , 1999, Seminars in cell & developmental biology.

[50]  Hidetoshi Shimodaira,et al.  Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference , 1999, Molecular Biology and Evolution.

[51]  R Abagyan,et al.  A genetic linkage map for zebrafish: comparative analysis and localization of genes and expressed sequences. , 1999, Genome research.

[52]  A. Force,et al.  Preservation of duplicate genes by complementary, degenerative mutations. , 1999, Genetics.

[53]  J. Postlethwait,et al.  Cloning of two loci for synapse protein Snap25 in zebrafish: Comparison of paralogous linkage groups suggests loss of one locus in the mammalian lineage , 1998, Journal of neuroscience research.

[54]  Y L Wang,et al.  Zebrafish hox clusters and vertebrate genome evolution. , 1998, Science.

[55]  Joachim Wittbrodt,et al.  More genes in fish , 1998 .

[56]  N. M. Brooke,et al.  A molecular timescale for vertebrate evolution , 1998, Nature.

[57]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[58]  H. Toresson,et al.  Cloning and expression of three members of the zebrafish Bmp family: Bmp2a, Bmp2b and Bmp4. , 1997, Gene.

[59]  Ziheng Yang,et al.  PAML: a program package for phylogenetic analysis by maximum likelihood , 1997, Comput. Appl. Biosci..

[60]  J. Spring,et al.  Vertebrate evolution by interspecific hybridisation – are we polyploid? , 1997, FEBS letters.

[61]  A. Sidow Gen(om)e duplications in the evolution of early vertebrates. , 1996, Current opinion in genetics & development.

[62]  A. Meyer,et al.  The complete mitochondrial DNA sequence of the bichir (Polypterus ornatipinnis), a basal ray-finned fish: ancient establishment of the consensus vertebrate gene order. , 1996, Genetics.

[63]  J. Nathans,et al.  A Large Family of Putative Transmembrane Receptors Homologous to the Product of the Drosophila Tissue Polarity Gene frizzled(*) , 1996, The Journal of Biological Chemistry.

[64]  L. Grande Chapter 5 – Interrelationships of Acipenseriformes, with Comments on “Chondrostei” , 1996 .

[65]  H Philippe,et al.  How many nucleotides are required to resolve a phylogenetic problem? The use of a new statistical method applicable to available sequences. , 1994, Molecular phylogenetics and evolution.

[66]  Jordi Garcia-Fernàndez,et al.  Archetypal organization of the amphioxus Hox gene cluster , 1994, Nature.

[67]  W M Barnes,et al.  PCR amplification of up to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[68]  Inagaki Hidehito,et al.  Expression of the tyrosinase-encoding gene in a colorless melanophore mutant of the medaka fish, Oryzias latipes. , 1994 .

[69]  Y. Bessho,et al.  Expression of the tyrosinase-encoding gene in a colorless melanophore mutant of the medaka fish, Oryzias latipes. , 1994, Gene.

[70]  H. Philippe,et al.  MUST, a computer package of Management Utilities for Sequences and Trees. , 1993, Nucleic acids research.

[71]  G. Lecointre,et al.  A 28S rRNA-based phylogeny of the gnathostomes: first steps in the analysis of conflict and congruence with morphologically based cladograms. , 1993, Molecular phylogenetics and evolution.

[72]  R. Harrison,et al.  Phylogenetic relationships of neopterygian fishes, inferred from mitochondrial DNA sequences. , 1991, Molecular biology and evolution.

[73]  R. Spritz,et al.  Tyrosinase gene mutations associated with type IB ("yellow") oculocutaneous albinism. , 1991, American journal of human genetics.

[74]  J. Oliver,et al.  The general stochastic model of nucleotide substitution. , 1990, Journal of theoretical biology.

[75]  M. D'Esposito,et al.  The human HOX gene family. , 1989, Nucleic acids research.

[76]  R. Krumlauf,et al.  The murine and Drosophila homeobox gene complexes have common features of organization and expression , 1989, Cell.

[77]  C. Tabin,et al.  Embryonic expression and nuclear localization of Xenopus homeobox (Xhox) gene products. , 1986, The EMBO journal.

[78]  E. Wiley,et al.  The Neopterygian Amia as a Living Fossil , 1984 .

[79]  E. Wiley,et al.  Family Lepisosteida (Gars) as Living Fossils , 1984 .

[80]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[81]  D. Vapnek,et al.  Versatile cloning vectors derived from the runaway-replication plasmid pKN402. , 1981, Gene.

[82]  W. Li,et al.  Rate of gene silencing at duplicate loci: a theoretical study and interpretation of data from tetraploid fishes. , 1980, Genetics.

[83]  Dr. Susumu Ohno Evolution by Gene Duplication , 1970, Springer Berlin Heidelberg.