Focused ion-beam tomography

[1]  A. Lasagni,et al.  Three Dimensional Characterization of Unmodified and Sr‐Modified Al‐Si Eutectics by FIB and FIB EDX Tomography , 2006 .

[2]  S. Subramaniam,et al.  Site-specific 3D imaging of cells and tissues with a dual beam microscope. , 2006, Journal of structural biology.

[3]  P. Cloetens,et al.  Advances in synchrotron radiation microtomography , 2006 .

[4]  R. Ghomashchi,et al.  Effects of Modification during Conventional and Semi-Solid Metal Processing of A356 Al-Si Alloy , 2006 .

[5]  B Münch,et al.  Three‐dimensional analysis of porous BaTiO3 ceramics using FIB nanotomography , 2004, Journal of microscopy.

[6]  R. Hull,et al.  Quantitative three-dimensional reconstruction of geometrically complex structures with nanoscale resolution , 2002 .

[7]  Peihua Qiu,et al.  Statistical Analysis of Microstructures in Materials Science , 2002, Technometrics.

[8]  E. Maire,et al.  On the application of x-ray microtomography in the field of materials science , 2001 .

[9]  H. Hutter,et al.  Visualization of 3D-SIMS measurements , 2001 .

[10]  H. Hutter,et al.  Characterization of the 3D-distribution of the components in Al-alloyed high speed steels with SIMS , 2001 .

[11]  J. W. Owens,et al.  Synchrotron X-ray microtomography, X-ray absorption near edge structure, extended X-ray absorption fine structure, and voxel imaging of a cobalt–zeolite-Y complex , 2001 .

[12]  Robert Puers,et al.  A review of focused ion beam applications in microsystem technology , 2001 .

[13]  Laurent Babout,et al.  Characterization by X-ray computed tomography of decohesion, porosity growth and coalescence in model metal matrix composites , 2001 .

[14]  J. Dunsmuir,et al.  NMR T2 distributions and two phase flow simulations from x-ray micro-tomography images of sandstones. , 2001, Magnetic resonance imaging.

[15]  M Defrise,et al.  A short reader's guide to 3D tomographic reconstruction. , 2001, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[16]  Wolfgang Ludwig,et al.  Penetration of liquid gallium into the grain boundaries of aluminium: a synchrotron radiation microtomographic investigation , 2000 .

[17]  Jan D. Miller,et al.  Network analysis of filter cake pore structure by high resolution X-ray microtomography , 2000 .

[18]  P. Cloetens,et al.  Characterisation by X-ray micro-tomography of cavity coalescence during superplastic deformation , 2000 .

[19]  Robert Hull,et al.  Reconstruction of three-dimensional chemistry and geometry using focused ion beam microscopy , 1999 .

[20]  M. Phaneuf,et al.  Applications of focused ion beam microscopy to materials science specimens , 1999 .

[21]  Christophe Vieu,et al.  Design and realization of a very high-resolution FIB nanofabrication instrument , 1999 .

[22]  Wang,et al.  Application of focused ion beam (FIB) microscopy to the study of crack profiles , 1999 .

[23]  C. Pareige,et al.  Tomographic Atom Probe: New Dimension in Materials Analysis , 1999, Microscopy and Microanalysis.

[24]  E. Rau,et al.  Information depth and spatial resolution in BSE microtomography in SEM , 1998 .

[25]  Baldev Raj,et al.  Confocal laser scanning microscopy: Applications in material science and technology , 1998 .

[26]  H. Komatsubara,et al.  High spatial resolution 3D analysis of materials using gallium focused ion beam secondary ion mass spectrometry (FIB SIMS) , 1998 .

[27]  D. Jamieson Structural and electrical characterisation of semiconductor materials using a nuclear microprobe , 1998 .

[28]  P. D. Lauren,et al.  Three‐dimensional reconstruction of Widmanstätten plates in Fe–12.3Mn–0.8C , 1997 .

[29]  N. McIntyre,et al.  Topographic Correction of 3D SIMS Images , 1997 .

[30]  M. Mangan,et al.  Three dimensional investigation of Cu-Ti discontinuous precipitation , 1997 .

[31]  Soo Chin Liew,et al.  A PIXE micro-tomography experiment using MLEM algorithm , 1997 .

[32]  A. Sakellariou,et al.  Advances in 3D ion micro-tomography , 1997 .

[33]  Somnath Ghosh,et al.  Quantitative characterization and modeling of composite microstructures by voronoi cells , 1997 .

[34]  Stuart R. Stock,et al.  Direct observation of crack opening as a function of applied load in the interior of a notched tensile sample of AlLi 2090 , 1997 .

[35]  F. Braet,et al.  Drying cells for SEM, AFM and TEM by hexamethyldisilazane: a study on hepatic endothelial cells , 1997, Journal of microscopy.

[36]  K. Gamo RECENT ADVANCES OF FOCUSED ION BEAM TECHNOLOGY , 1997 .

[37]  K. Malmqvist Analytical techniques in nuclear microprobes , 1995 .

[38]  R. Schofield,et al.  Applications of ion-beam tomographic element microanalysis (ITEM) , 1995 .

[39]  Paul S. Heckbert,et al.  Graphics gems IV , 1994 .

[40]  Eric Haines,et al.  Point in Polygon Strategies , 1994, Graphics Gems.

[41]  Mark H. Ellisman,et al.  Serial Section Electron Tomography: A Method for Three-Dimensional Reconstruction of Large Structures , 1994, NeuroImage.

[42]  A. Fenster,et al.  Use of image depth profiling SIMS for the study of tinplate corrosion , 1994 .

[43]  R. K. Everett,et al.  Modeling of Non-Uniform Composite Microstructures , 1993 .

[44]  R. J. Young,et al.  An application of scanned focused ion beam milling to studies on the internal morphology of small arthropods , 1993 .

[45]  D. Blavette,et al.  An atom probe for three-dimensional tomography , 1993, Nature.

[46]  Jon Orloff,et al.  High‐resolution focused ion beams , 1993 .

[47]  R. Young,et al.  Recent advances in application of focused ion beam technology , 1993 .

[48]  K. R. Taylor,et al.  SIMS imaging studies of the corrosion of alloy 800 and alloy 600 surfaces under secondary side boiler conditions , 1992 .

[49]  Manfred Grasserbauer,et al.  Three dimensional ultra trace analysis of materials , 1992 .

[50]  Carolyn A. Bucholtz,et al.  Shape-based interpolation , 1992, IEEE Computer Graphics and Applications.

[51]  Hitomi Satoh,et al.  Three‐dimensional analysis of a microstructure by submicron secondary ion mass spectrometry , 1991 .

[52]  J. Melngailis Focused ion beam technology and applications , 1987 .

[53]  J. Ziegler,et al.  stopping and range of ions in solids , 1985 .

[54]  A. Mitsushima,et al.  A preparation method for observing intracellular structures by scanning electron microscopy , 1984, Journal of microscopy.

[55]  J. Orloff,et al.  Study of a field‐ionization source for microprobe applications , 1975 .

[56]  F. Stevie Focused Ion Beam Secondary Ion Mass Spectrometry (FIB-SIMS) , 2005 .

[57]  J. Nield,et al.  Determining the structure of biological macromolecules by transmission electron microscopy, single particle analysis and 3D reconstruction. , 2001, Progress in biophysics and molecular biology.

[58]  M. K. Miller,et al.  The development of atom probe field-ion microscopy , 2000 .

[59]  R. G. Forbest Understanding how the liquid-metal ion source works , 1997 .

[60]  Y. Xi Analysis of internal structures of composite materials by second-order property of mosaic patterns , 1996 .

[61]  R. Pyrz Quantitative description of the microstructure of composites. Part I: Morphology of unidirectional composite systems , 1994 .

[62]  P. Tucker,et al.  A Brief History of Microscopy , 1994 .

[63]  J. Udupa,et al.  Shape-based interpolation of multidimensional objects. , 1990, IEEE transactions on medical imaging.

[64]  W. Steiger,et al.  Sputter redeposition as a limit to spatially three-dimensional SIMS microanalysis , 1988 .

[65]  M. Loretto Electron-Specimen Interactions , 1984 .

[66]  P. Howell Stereological methods vol. 2: Theoretical foundation: By E. R. Weibel Academic Press Inc., London, 1980 340 pages, many figures and tables ISBN 0‐12‐742202‐1 , 1981 .

[67]  H. Schiøtt Approximations and interpolation rules for ranges and range stragglings , 1970 .