Argonaute protein identity and pairing geometry determine cooperativity in mammalian RNA silencing.

Small RNAs loaded into Argonaute proteins direct silencing of complementary target mRNAs. It has been proposed that multiple, imperfectly complementary small interfering RNAs or microRNAs, when bound to the 3' untranslated region of a target mRNA, function cooperatively to silence target expression. We report that, in cultured human HeLa cells and mouse embryonic fibroblasts, Argonaute1 (Ago1), Ago3, and Ago4 act cooperatively to silence both perfectly and partially complementary target RNAs bearing multiple small RNA-binding sites. Our data suggest that for Ago1, Ago3, and Ago4, multiple, adjacent small RNA-binding sites facilitate cooperative interactions that stabilize Argonaute binding. In contrast, small RNAs bound to Ago2 and pairing perfectly to an mRNA target act independently to silence expression. Noncooperative silencing by Ago2 does not require the endoribonuclease activity of the protein: A mutant Ago2 that cannot cleave its mRNA target also silences noncooperatively. We propose that Ago2 binds its targets by a mechanism fundamentally distinct from that used by the three other mammalian Argonaute proteins.

[1]  Nicholas T. Ingolia,et al.  Mammalian microRNAs predominantly act to decrease target mRNA levels , 2010, Nature.

[2]  Chaohui Yu,et al.  Argonaute proteins: potential biomarkers for human colon cancer , 2010, BMC Cancer.

[3]  T. Zhang,et al.  Profiling of mismatch discrimination in RNAi enabled rational design of allele-specific siRNAs , 2009, Nucleic acids research.

[4]  P. Zamore,et al.  Small silencing RNAs: an expanding universe , 2009, Nature Reviews Genetics.

[5]  C. Burge,et al.  Most mammalian mRNAs are conserved targets of microRNAs. , 2008, Genome research.

[6]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[7]  D. Bartel,et al.  The impact of microRNAs on protein output , 2008, Nature.

[8]  Kiyoshi Asai,et al.  Characterization of endogenous human Argonautes and their miRNA partners in RNA silencing , 2008, Proceedings of the National Academy of Sciences.

[9]  Stefan L Ameres,et al.  The impact of target site accessibility on the design of effective siRNAs , 2008, Nature Biotechnology.

[10]  Maria Grahn,et al.  Analysis of siRNA specificity on targets with double-nucleotide mismatches , 2008, Nucleic acids research.

[11]  P. Zamore,et al.  Small silencing RNAs , 2007, Current Biology.

[12]  Anton J. Enright,et al.  A Slicer-independent role for Argonaute 2 in hematopoiesis and the microRNA pathway. , 2007, Genes & development.

[13]  Phillip D Zamore,et al.  Beginning to understand microRNA function , 2007, Cell Research.

[14]  Stefan L Ameres,et al.  Molecular Basis for Target RNA Recognition and Cleavage by Human RISC , 2007, Cell.

[15]  L. Lim,et al.  MicroRNA targeting specificity in mammals: determinants beyond seed pairing. , 2007, Molecular cell.

[16]  Isabelle Behm-Ansmant,et al.  P-Body Formation Is a Consequence, Not the Cause, of RNA-Mediated Gene Silencing , 2007, Molecular and Cellular Biology.

[17]  Roy Parker,et al.  P bodies and the control of mRNA translation and degradation. , 2007, Molecular cell.

[18]  J. Yates,et al.  A role for the P-body component GW182 in microRNA function , 2005, Nature Cell Biology.

[19]  Isabelle Behm-Ansmant,et al.  A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. , 2005, RNA.

[20]  Tariq M Rana,et al.  Target accessibility dictates the potency of human RISC , 2005, Nature Structural &Molecular Biology.

[21]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[22]  Ji-Joon Song,et al.  Purified Argonaute2 and an siRNA form recombinant human RISC , 2005, Nature Structural &Molecular Biology.

[23]  Claes Wahlestedt,et al.  A systematic analysis of the silencing effects of an active siRNA at all single-nucleotide mismatched target sites , 2005, Nucleic acids research.

[24]  J. Castle,et al.  Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs , 2005, Nature.

[25]  R. Russell,et al.  Principles of MicroRNA–Target Recognition , 2005, PLoS biology.

[26]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[27]  G. Hannon,et al.  Crystal Structure of Argonaute and Its Implications for RISC Slicer Activity , 2004, Science.

[28]  J. M. Thomson,et al.  Argonaute2 Is the Catalytic Engine of Mammalian RNAi , 2004, Science.

[29]  T. Tuschl,et al.  Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. , 2004, Molecular cell.

[30]  P. Zamore,et al.  Kinetic analysis of the RNAi enzyme complex , 2004, Nature Structural &Molecular Biology.

[31]  Phillip D Zamore,et al.  The RNA-Induced Silencing Complex Is a Mg2+-Dependent Endonuclease , 2004, Current Biology.

[32]  Thomas Tuschl,et al.  RISC is a 5' phosphomonoester-producing RNA endonuclease. , 2004, Genes & development.

[33]  D. Bartel,et al.  Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs , 2004, Nature Reviews Genetics.

[34]  D. Bartel,et al.  MicroRNA-Directed Cleavage of HOXB8 mRNA , 2004, Science.

[35]  John G Doench,et al.  Specificity of microRNA target selection in translational repression. , 2004, Genes & development.

[36]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[37]  Eun-Young Choi,et al.  The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3'UTR. , 2004, Genes & development.

[38]  Nikolaus Rajewsky,et al.  Computational identification of microRNA targets , 2004, Genome Biology.

[39]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[40]  T. Du,et al.  Asymmetry in the Assembly of the RNAi Enzyme Complex , 2003, Cell.

[41]  Russell G Foster,et al.  Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis. , 2003, Nucleic acids research.

[42]  A. Rougvie,et al.  The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs. , 2003, Developmental cell.

[43]  Chiara Gamberi,et al.  The C elegans hunchback homolog, hbl-1, controls temporal patterning and is a probable microRNA target. , 2003, Developmental cell.

[44]  Phillip D Zamore,et al.  Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. , 2002, Molecular cell.

[45]  Eric J Wagner,et al.  Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. , 2002, Molecular cell.

[46]  M. Amarzguioui,et al.  Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor. , 2002, Nucleic acids research.

[47]  E. Lai Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation , 2002, Nature Genetics.

[48]  T. Tuschl,et al.  Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate , 2001, The EMBO journal.

[49]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[50]  M. Pfaffl,et al.  A new mathematical model for relative quantification in real-time RT-PCR. , 2001, Nucleic acids research.

[51]  T. Tuschl,et al.  RNA interference is mediated by 21- and 22-nucleotide RNAs. , 2001, Genes & development.

[52]  S. Kanaya,et al.  Catalysis by Escherichia coli ribonuclease HI is facilitated by a phosphate group of the substrate. , 2000, Biochemistry.

[53]  P. Sharp,et al.  RNA Interference , 2000, Science.

[54]  B. Reinhart,et al.  The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans , 2000, Nature.

[55]  V. Ambros,et al.  The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. , 1999, Developmental biology.

[56]  M. Oobatake,et al.  Thermal Stability of Escherichia coli Ribonuclease HI and Its Active Site Mutants in the Presence and Absence of the Mg2+ Ion , 1996, The Journal of Biological Chemistry.

[57]  G. Ruvkun,et al.  Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans , 1993, Cell.

[58]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[59]  R. A. Cox Biophysical Chemistry Part III: The Behavior of Biological Macromolecules , 1981 .

[60]  H. Lipkin Where is the ?c? , 1978 .

[61]  P. Etienne,et al.  Supplemental Table S2 , 2012 .

[62]  Academic editor , 2012 .

[63]  向井 あすか,et al.  Characterization of endogenous human argonautes and their miRNA partners in RNA silencing , 2008 .

[64]  Leemor Joshua-Tor,et al.  Slicer and the argonautes. , 2007, Nature chemical biology.

[65]  P. Reich,et al.  [Letters to nature] , 1975, Nature.

[66]  M. A. Rector,et al.  References and Notes Materials and Methods Som Text Fig. S1 Table S1 References a Microrna in a Multiple- Turnover Rnai Enzyme Complex , 2022 .