Online hash tracking

In this paper, we propose an online hashing tracking method. Different from the previous batch modes for hashing, the hashing function in this work is online learned by new pairs of collected templates received sequentially, in which the relationship between the positive templates and negative templates can be appropriately preserved that is more useful for visual tracking. With the hash coding for templates, the between-frame matching can be efficiently conducted. Extensive experiments demonstrate that our tracker performs favorably against the state-of-the-art ones.

[1]  Wei-Shi Zheng,et al.  Online Hashing , 2013, IEEE Transactions on Neural Networks and Learning Systems.

[2]  Thorsten Joachims,et al.  Training structural SVMs when exact inference is intractable , 2008, ICML '08.

[3]  Frank Chongwoo Park,et al.  A Geometric Particle Filter for Template-Based Visual Tracking , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[5]  Chuancai Liu,et al.  Two dimensional hashing for visual tracking , 2015, Comput. Vis. Image Underst..

[6]  David Zhang,et al.  Fast Visual Tracking via Dense Spatio-temporal Context Learning , 2014, ECCV.

[7]  Hong Qiao,et al.  Visual Tracking via Saliency Weighted Sparse Coding Appearance Model , 2014, 2014 22nd International Conference on Pattern Recognition.

[8]  Qi Tian,et al.  Contextual Hashing for Large-Scale Image Search , 2014, IEEE Transactions on Image Processing.

[9]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[10]  Koby Crammer,et al.  Online Passive-Aggressive Algorithms , 2003, J. Mach. Learn. Res..

[11]  Huchuan Lu,et al.  Robust Superpixel Tracking , 2014, IEEE Transactions on Image Processing.

[12]  Qi Wang,et al.  Multi-cue based tracking , 2014, Neurocomputing.

[13]  Lei Zhang,et al.  Real-Time Compressive Tracking , 2012, ECCV.

[14]  Qi Wang,et al.  Robust Superpixel Tracking via Depth Fusion , 2014, IEEE Transactions on Circuits and Systems for Video Technology.

[15]  Stan Sclaroff,et al.  MEEM: Robust Tracking via Multiple Experts Using Entropy Minimization , 2014, ECCV.

[16]  Lu Zhang,et al.  Preserving Structure in Model-Free Tracking , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Moses Charikar,et al.  Similarity estimation techniques from rounding algorithms , 2002, STOC '02.

[18]  Junseok Kwon,et al.  Visual tracking decomposition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[19]  Erik Blasch,et al.  Encoding color information for visual tracking: Algorithms and benchmark , 2015, IEEE Transactions on Image Processing.

[20]  Laura Sevilla-Lara,et al.  Distribution fields for tracking , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[21]  Huchuan Lu,et al.  Visual tracking via adaptive structural local sparse appearance model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[22]  Rongrong Ji,et al.  Supervised hashing with kernels , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[23]  Horst Bischof,et al.  On-line Boosting and Vision , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[24]  Huchuan Lu,et al.  Discriminative Hash Tracking With Group Sparsity , 2016, IEEE Transactions on Cybernetics.

[25]  Ming-Hsuan Yang,et al.  Robust Object Tracking with Online Multiple Instance Learning , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.