Geology and Scientific Significance of the Rümker Region in Northern Oceanus Procellarum: China's Chang'E‐5 Landing Region

The Rumker region (41–45°N, 49–69°W) is located in northern Oceanus Procellarum of the Moon. Mons Rumker is the most distinctive geological feature in the area. The region is characterized by prolonged lunar volcanism (Late Imbrian Period to Eratosthenian Period), forming multiple geologic units in the area, including very low-Ti to low-Ti mare basalts, high-Ti mare basalts, and volcanic complexes. Each geologic unit has distinct element composition and mineral assemblages. The Rumker region, overlying the Procellarum KREEP Terrain, was selected as the landing region for China's Chang'E-5 lunar sample return mission. Prelanding analyses of the geologic context and scientific potential are reported in this contribution. We conducted detailed geological mapping using image, spectral, and altimetry data. Fourteen geological units were defined, a geologic map was constructed, and the geologic history was outlined. The western mare units (Im1, Im2, and Im3) are Imbrian-aged (~3.4–3.5 Ga) representing the major stage of lunar mare eruptive volcanism. The eastern young mare units (Em3 and Em4; <2 Ga) are among the youngest mare basalts on the Moon. They have never been explored in situ or studied in the laboratory. We suggest that samples returned from the eastern mare unit (Em4) could answer many fundamental questions and that this unit should be listed as the top priority landing site for Chang'E-5 sample return mission.

[1]  I. Crawford,et al.  Individual lava flow thicknesses in Oceanus Procellarum and Mare Serenitatis determined from Clementine multispectral data , 2010 .

[2]  Z. S. Liu,et al.  Global mapping and analysis of lunar wrinkle ridges , 2015 .

[3]  Ziyuan Ouyang,et al.  Mineralogical variation of the late stage mare basalts , 2016 .

[4]  I. Crawford,et al.  Lunar exploration: opening a window into the history and evolution of the inner Solar System , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[5]  A. Morawski,et al.  Spectral evidence for Cr/3+/, Ti/3+/, and Fe/2+/ rather than Cr/2+/ and Fe/3+/ in lunar ferromagnesian silicates , 1973 .

[6]  Yu Lu,et al.  Geology, tectonism and composition of the northwest Imbrium region , 2018 .

[7]  Guangyou Fang,et al.  Volcanic history of the Imbrium basin: A close-up view from the lunar rover Yutu , 2015, Proceedings of the National Academy of Sciences.

[8]  Paul G. Lucey,et al.  Clementine images of the lunar sample‐return stations: Refinement of FeO and TiO2 mapping techniques , 1997 .

[9]  David E. Smith,et al.  Lunar topographic roughness maps from Lunar Orbiter Laser Altimeter (LOLA) data: Scale dependence and correlation with geologic features and units , 2013 .

[10]  Y. Zou,et al.  Scientific Visions of Lunar Research-Station from China , 2017 .

[11]  Doris Breuer,et al.  Asymmetric thermal evolution of the Moon , 2012 .

[12]  Edward A. Cloutis,et al.  Near-infrared spectra of ferrous mineral mixtures and methods for their identification in planetary surface spectra , 2014 .

[13]  Harald Hiesinger,et al.  Lunar sinuous rilles: Distribution, characteristics, and implications for their origin , 2013 .

[14]  Y. Yamaguchi,et al.  Magma source transition of lunar mare volcanism at 2.3 Ga , 2015 .

[15]  D. H. Scott,et al.  Geologic Map of the West Side of the Moon , 1977 .

[16]  William K. Hartmann,et al.  Cratering Records in the Inner Solar System in Relation to the Lunar Reference System , 2001 .

[17]  Joseph W. Boardman,et al.  The Moon Mineralogy Mapper (M 3 ) on Chandrayaan-1 , 2009 .

[18]  Robert O. Green,et al.  The mineralogy of late stage lunar volcanism as observed by the Moon Mineralogy Mapper on Chandrayaan‐1 , 2009 .

[19]  Eugene I. Smith Rümker hills: a lunar volcanic dome complex , 1974 .

[20]  David E. Smith,et al.  Global surface slopes and roughness of the Moon from the Lunar Orbiter Laser Altimeter , 2011 .

[21]  Joseph W. Boardman,et al.  Measuring moonlight: An overview of the spatial properties, lunar coverage, selenolocation, and related Level 1B products of the Moon Mineralogy Mapper , 2011 .

[22]  J. M. Boyce,et al.  Ages of flow units in the far eastern maria and implications for basin-filling history , 1978 .

[23]  G. Neukum,et al.  Planetary surface dating from crater size-frequency distribution measurements: Partial resurfacing events and statistical age uncertainty , 2010 .

[24]  G. Neukum,et al.  Lunar red spots: Stratigraphic sequence and ages of domes and plains in the Hansteen and Helmet regions on the lunar nearside , 2010 .

[25]  Lisa R. Gaddis,et al.  Digital Processing for a Global Multispectral Map of the Moon from the Clementine UVVIS Imaging Instrument , 1999 .

[26]  Erick R. Malaret,et al.  A visible and near-infrared photometric correction for Moon Mineralogy Mapper (M 3 ) , 2013 .

[27]  Clive R. Neal,et al.  The Moon 35 years after Apollo: What's left to learn? , 2009 .

[28]  J. Head,et al.  Lunar mare domes: Classification and modes of origin , 1977 .

[29]  Robert O. Green,et al.  Thermal removal from near‐infrared imaging spectroscopy data of the Moon , 2011 .

[30]  Lionel Wilson,et al.  Origin of lunar sinuous rilles: Modeling effects of gravity, surface slope, and lava composition on erosion rates during the formation of Rima Prinz , 2012 .

[31]  Long Xiao China's touch on the Moon , 2014 .

[32]  J. Head,et al.  Imbrian-Age Highland Volcanism on the Moon: The Gruithuisen and Mairan Domes , 1978, Science.

[33]  P. Spudis,et al.  A new technique for estimating the thickness of mare basalts in Imbrium Basin , 2009 .

[34]  R. Strom Lunar mare ridges, rings and volcanic ring complexes , 1972 .

[35]  J. Head,et al.  The lunar Gruithuisen silicic extrusive domes: Topographic configuration, morphology, ages, and internal structure , 2016 .

[36]  Sami W. Asmar,et al.  The Crust of the Moon as Seen by GRAIL , 2012, Science.

[37]  Paul G. Lucey,et al.  Imaging of lunar surface maturity , 2000 .

[38]  Timothy D. Glotch,et al.  The Mons Rümker volcanic complex of the Moon: A candidate landing site for the Chang'E‐5 mission , 2016 .

[39]  Ralf Jaumann,et al.  Ages and stratigraphy of lunar mare basalts in Mare Frigoris and other nearside maria based on crater size‐frequency distribution measurements , 2010 .

[40]  C. Pieters Mare basalt types on the front side of the moon - A summary of spectral reflectance data , 1978 .

[41]  Guangyou Fang,et al.  A young multilayered terrane of the northern Mare Imbrium revealed by Chang’E-3 mission , 2015, Science.

[42]  J. Head,et al.  Lunar mare ridges - Analysis of ridge-crater intersections and implications for the tectonic origin of mare ridges , 1988 .

[43]  P. G. Lucey,et al.  Global Map Products from the Kaguya Multiband Imager at 512 ppd: Minerals, FeO, and OMAT , 2016 .

[44]  Tsuneo Matsunaga,et al.  Global lunar-surface mapping experiment using the Lunar Imager/Spectrometer on SELENE , 2008 .

[45]  E. Fischer,et al.  A Sharper View of Impact Craters from Clementine Data , 1994, Science.

[46]  J. Head,et al.  Stratigraphy of Oceanus Procellarum basalts: Sources and styles of emplacement , 1980 .

[47]  Long Xiao,et al.  Geologic characteristics of the Chang’E-3 exploration region , 2014 .

[48]  B. Hapke,et al.  Lunar mare TiO2 abundances estimated from UV/Vis reflectance , 2017 .

[49]  Eugene I. Smith,et al.  Identification, distribution and significance of lunar volcanic domes , 1973 .

[50]  Boris A. Ivanov,et al.  Cratering History and Lunar Chronology , 2006 .

[51]  D. Kring,et al.  Identification and characterization of science-rich landing sites for lunar lander missions using integrated remote sensing observations , 2012 .

[52]  Meng‐Hua Zhu,et al.  Regolith stratigraphy at the Chang'E‐3 landing site as seen by lunar penetrating radar , 2015 .

[53]  John F. Mustard,et al.  Compositional diversity and geologic insights of the Aristarchus crater from Moon Mineralogy Mapper data , 2011 .

[54]  P. Spudis,et al.  LRO observations of morphology and surface roughness of volcanic cones and lobate lava flows in the Marius Hills , 2013 .

[55]  S. Besse,et al.  Mineralogical Diversity and Geology of Humboldt Crater Derived Using Moon Mineralogy Mapper Data , 2017, Journal of geophysical research. Planets.

[56]  L. Haskin The Imbrium impact event and the thorium distribution at the lunar highlands surface , 1998 .

[57]  Carle M. Pieters,et al.  Remote Determination of Exposure Degree and Iron Concentration of Lunar Soils Using VIS-NIR Spectroscopic Methods , 1994 .

[58]  Chunlai Li,et al.  The Thickness and Volume of Young Basalts Within Mare Imbrium , 2018 .

[59]  G. Neukum,et al.  Stratigraphic sequence and ages of volcanic units in the Gruithuisen region of the Moon , 2002 .

[60]  D. Wilhelms Summary of lunar stratigraphy - telescopic observations , 1970 .

[61]  David A. Kring,et al.  A global lunar landing site study to provide the scientific context for exploration of the Moon , 2012 .

[62]  L. Taylor,et al.  A chemical model for generating the sources of mare basalts: Combined equilibrium and fractional crystallization of the lunar magmasphere , 1992 .

[63]  S. V. Gasselt,et al.  Map-projection-independent crater size-frequency determination in GIS environments—New software tool for ArcGIS , 2011 .

[64]  Joseph W. Boardman,et al.  The Moon Mineralogy Mapper (M3) imaging spectrometer for lunar science: Instrument description, calibration, on‐orbit measurements, science data calibration and on‐orbit validation , 2011 .

[65]  L. Taylor,et al.  Petrogenesis of mare basalts - A record of lunar volcanism , 1992 .

[66]  D. Campbell,et al.  Surface morphology of domes in the Marius Hills and Mons Rümker regions of the Moon from Earth‐based radar data , 2009 .

[67]  Richard J. Pike,et al.  Depth/diameter relations of fresh lunar craters: Revision from spacecraft data , 1974 .

[68]  Paul G. Lucey,et al.  Highly Silicic Compositions on the Moon , 2010, Science.

[69]  J. J. Gillis,et al.  Northwest Africa 032: Product of lunar volcanism , 2002 .

[70]  Ian A. Crawford,et al.  Full moon exploration , 2007 .

[71]  R. Clark,et al.  Lunar mare deposits associated with the Orientale impact basin: New insights into mineralogy, history, mode of emplacement, and relation to Orientale Basin evolution from Moon Mineralogy Mapper (M3) data from Chandrayaan‐1 , 2011 .

[72]  Carle M. Pieters,et al.  Composition of the lunar highland crust from near‐infrared spectroscopy , 1986 .

[73]  Thomas Roatsch,et al.  GLD100: The near-global lunar 100 m raster DTM from LROC WAC stereo image data , 2012 .

[74]  David E. Smith,et al.  A New Lunar Digital Elevation Model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera , 2015 .

[75]  G. Ryder,et al.  Stratigraphy and Isotope Ages of Lunar Geologic Units: Chronological Standard for the Inner Solar System , 2001 .

[76]  J. Zhang,et al.  Spectral and Mineralogical Analysis of Chang'e-5 Candidate Landing Site in Northern Oceanus Procellarum , 2017 .

[77]  R. Schultz,et al.  Cross faults in extensional settings: Stress triggering, displacement localization, and implications for the origin of blunt troughs at Valles Marineris, Mars , 2003 .

[78]  J. Head Lava flooding of ancient planetary crusts: Geometry, thickness, and volumes of flooded lunar impact basins , 1982 .

[79]  David A. Smith,et al.  The Scientific Context for the Exploration of the Moon , 2006 .

[80]  Ralf Jaumann,et al.  Ages and stratigraphy of lunar mare basalts: A synthesis , 2011 .

[81]  Makiko Ohtake,et al.  Lunar Iron and Titanium Abundance Algorithms Based on SELENE (Kaguya) Multiband Imager Data , 2012 .

[82]  K. Di,et al.  Global survey of lunar wrinkle ridge formation times , 2017 .

[83]  Long Xiao,et al.  The 3‐D geological model around Chang'E‐3 landing site based on lunar penetrating radar Channel 1 data , 2017 .

[84]  Satoru Yamamoto,et al.  Data Products of SELENE (Kaguya) Terrain Camera for Future Lunar Missions , 2014 .

[85]  J. Head,et al.  The Procellarum volcanic complexes - Contrasting styles of volcanism. [lunar morphology] , 1977 .

[86]  J. Snape,et al.  Phosphate ages in Apollo 14 breccias: Resolving multiple impact events with high precision U–Pb SIMS analyses , 2016 .

[87]  Michael J. Gaffey,et al.  Pyroxene spectroscopy revisited - Spectral-compositional correlations and relationship to geothermometry , 1991 .

[88]  Ralf Jaumann,et al.  Ages of Mare Basalts on the Lunar Nearside: A Synthesis , 2000 .

[89]  C. Pieters,et al.  Mineralogy of the last lunar basalts: Results from Clementine , 2001 .

[90]  D. H. Scott,et al.  Geologic map of the Rumker Quadrangle of the Moon , 1973 .

[91]  Akira Iwasaki,et al.  Timing and characteristics of the latest mare eruption on the Moon , 2011 .

[92]  R. Jaumann,et al.  Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum , 2003 .

[93]  Roger J. Phillips,et al.  The “Procellarum KREEP Terrane”: Implications for mare volcanism and lunar evolution , 2000 .

[94]  D. Vaniman,et al.  Refined thorium abundances for lunar red spots: Implications for evolved, nonmare volcanism on the Moon , 2006 .

[95]  S. Taylor The Moon re-examined , 2014 .

[96]  A. McEwen,et al.  Lunar Reconnaissance Orbiter Camera (LROC) Instrument Overview , 2010 .

[97]  Paul G. Lucey,et al.  Lunar Prospector neutron spectrometer constraints on TiO2 , 2002 .

[98]  Harald Hiesinger,et al.  New Views of Lunar Geoscience: An Introduction and Overview , 2006 .

[99]  T. McCord,et al.  Electronic spectra of pyroxenes and interpretation of telescopic spectral reflectivity curves of the moon. , 1972 .

[100]  R. Jaumann,et al.  Lunar mare basalt flow units: Thicknesses determined from crater size‐frequency distributions , 2002 .

[101]  R. Jaumann,et al.  Back to the Moon: The scientific rationale for resuming lunar surface exploration , 2012 .

[102]  Chunlai Li,et al.  Correlated compositional and mineralogical investigations at the Chang′e-3 landing site , 2015, Nature Communications.

[103]  Paul G. Lucey,et al.  The Mairan domes: Silicic volcanic constructs on the Moon , 2011 .

[104]  J. Head,et al.  Lunar Gruithuisen and Mairan domes: Rheology and mode of emplacement , 2003 .

[105]  Hauke Hussmann,et al.  Geology, geochemistry, and geophysics of the Moon: Status of current understanding , 2012 .

[106]  P. Spudis,et al.  The Stratigraphy of Lava Flows in Northern Oceanus Procellarum, Moon , 2001 .

[107]  B. Jolliff,et al.  Mineralogy and chemistry of Ti-bearing lunar soils: Effects on reflectance spectra and remote sensing observations , 2018 .

[108]  Lionel Wilson,et al.  Generation, ascent and eruption of magma on the Moon:new insights into source depths, magma supply, intrusions and effusive/explosive eruptions (Part 2: Predicted Emplacement Processes and Observations) , 2017 .

[109]  Tsuneo Matsunaga,et al.  Performance and scientific objectives of the SELENE (KAGUYA) Multiband Imager , 2008 .

[110]  F. El-Baz,et al.  Distribution, Morphology, and Origin of Ridges and Arches in Mare Serenitatis , 1975 .

[111]  J. J. Gillis,et al.  Major lunar crustal terranes: Surface expressions and crust‐mantle origins , 1999 .

[112]  Thomas H. Prettyman,et al.  Thorium abundances on the lunar surface , 2000 .

[113]  J. J. Gillis,et al.  The materials of the lunar Procellarum KREEP Terrane: A synthesis of data from geomorphological mapping, remote sensing, and sample analyses , 2000 .

[114]  G. J. Taylor,et al.  The Moon: A Taylor perspective , 2005 .

[115]  Thomas H. Prettyman,et al.  Elemental composition of the lunar surface: Analysis of gamma ray spectroscopy data from Lunar Prospector , 2006 .

[116]  P. Spudis The materials and formation of the Imbrium Basin , 1985 .

[117]  J. Haruyama,et al.  Geological features and evolution history of Sinus Iridum, the Moon , 2014 .

[118]  J. Head,et al.  Lunar cryptomaria: Physical characteristics, distribution, and implications for ancient volcanism , 2015 .

[119]  John B. Adams,et al.  Visible and near‐infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system , 1974 .

[120]  Lionel Wilson,et al.  Generation, ascent and eruption of magma on the Moon: New insights into source depths, magma supply, intrusions and effusive/explosive eruptions (Part 1: Theory) , 2017 .