Evidential evolving Gustafson-Kessel algorithm for online data streams partitioning using belief function theory

A new online clustering method called E2GK (Evidential Evolving Gustafson-Kessel) is introduced. This partitional clustering algorithm is based on the concept of credal partition defined in the theoretical framework of belief functions. A credal partition is derived online by applying an algorithm resulting from the adaptation of the Evolving Gustafson-Kessel (EGK) algorithm. Online partitioning of data streams is then possible with a meaningful interpretation of the data structure. A comparative study with the original online procedure shows that E2GK outperforms EGK on different entry data sets. To show the performance of E2GK, several experiments have been conducted on synthetic data sets as well as on data collected from a real application problem. A study of parameters' sensitivity is also carried out and solutions are proposed to limit complexity issues.

[1]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[2]  Noureddine Zerhouni,et al.  Time-Sliced Temporal Evidential Networks: The case of Evidential HMM with application to dynamical system analysis , 2011, 2011 IEEE Conference on Prognostics and Health Management.

[3]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[4]  Michalis Vazirgiannis,et al.  Clustering validity checking methods: part II , 2002, SGMD.

[5]  Shi Zhong,et al.  Efficient online spherical k-means clustering , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[6]  Thierry Denoeux,et al.  CECM: Constrained evidential C-means algorithm , 2012, Comput. Stat. Data Anal..

[7]  Michel Grabisch,et al.  K-order Additive Discrete Fuzzy Measures and Their Representation , 1997, Fuzzy Sets Syst..

[8]  D.P. Filev,et al.  An approach to online identification of Takagi-Sugeno fuzzy models , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[9]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[10]  Plamen P. Angelov,et al.  An approach for fuzzy rule-base adaptation using on-line clustering , 2004, Int. J. Approx. Reason..

[11]  E. Lughofer,et al.  Evolving fuzzy classifiers using different model architectures , 2008, Fuzzy Sets Syst..

[12]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[13]  William M. Rand,et al.  Objective Criteria for the Evaluation of Clustering Methods , 1971 .

[14]  Zied Elouedi,et al.  IK-BKM: An incremental clustering approach based on intra-cluster distance , 2010, ACS/IEEE International Conference on Computer Systems and Applications - AICCSA 2010.

[15]  Dong-Chul Park,et al.  Gradient based fuzzy c-means (GBFCM) algorithm , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[16]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[17]  P. Jaccard THE DISTRIBUTION OF THE FLORA IN THE ALPINE ZONE.1 , 1912 .

[18]  Frank Klawonn,et al.  Dynamic data assigning assessment clustering of streaming data , 2008, Appl. Soft Comput..

[19]  Thierry Denoeux,et al.  ECM: An evidential version of the fuzzy c , 2008, Pattern Recognit..

[20]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[21]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[22]  Thierry Denoeux,et al.  EVCLUS: evidential clustering of proximity data , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[23]  L.O. Hall,et al.  Online fuzzy c means , 2008, NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society.

[24]  Victor L. Brailovsky,et al.  A probabilistic approach to clustering , 1991, Pattern Recognit. Lett..

[25]  Alessandro Saffiotti,et al.  The Transferable Belief Model , 1991, ECSQARU.

[26]  J. C. Simon,et al.  3. Clustering Analysis , 1976 .

[27]  Ratna Babu Chinnam,et al.  An Industrial Strength Novelty Detection Framework for Autonomous Equipment Monitoring and Diagnostics , 2010, IEEE Transactions on Industrial Informatics.

[28]  Michalis Vazirgiannis,et al.  Cluster validity methods: part I , 2002, SGMD.

[29]  Prakash P. Shenoy,et al.  On the plausibility transformation method for translating belief function models to probability models , 2006, Int. J. Approx. Reason..

[30]  Yevgeniy V. Bodyanskiy Computational Intelligence Techniques for Data Analysis , 2005, Leipziger Informatik-Tage.

[31]  David G. Stork,et al.  Pattern Classification , 1973 .

[32]  Rong Yang,et al.  Machine Learning and Data Mining in Pattern Recognition , 2012, Lecture Notes in Computer Science.

[33]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[34]  Petra Perner,et al.  Acquisition of Concept Descriptions by Conceptual Clustering , 2005, MLDM.

[35]  Charles T. Zahn,et al.  Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters , 1971, IEEE Transactions on Computers.

[36]  Hakil Kim,et al.  Evidential reasoning approach to multisource-data classification in remote sensing , 1995, IEEE Trans. Syst. Man Cybern..

[37]  Thierry Denoeux A k -Nearest Neighbor Classification Rule Based on Dempster-Shafer Theory , 2008, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[38]  Teuvo Kohonen,et al.  Self-organization and associative memory: 3rd edition , 1989 .

[39]  Isak Gath,et al.  Unsupervised Optimal Fuzzy Clustering , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[41]  Michael R. Anderberg,et al.  Cluster Analysis for Applications , 1973 .

[42]  Donald Gustafson,et al.  Fuzzy clustering with a fuzzy covariance matrix , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[43]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[44]  Didier Dubois,et al.  New Semantics for Quantitative Possibility Theory , 2001, ECSQARU.

[45]  Rajesh N. Davé,et al.  Validating fuzzy partitions obtained through c-shells clustering , 1996, Pattern Recognit. Lett..

[46]  Eyke Hüllermeier,et al.  Online clustering of parallel data streams , 2006, Data Knowl. Eng..

[47]  Olga Georgieva,et al.  An Extended Version ofGustafson-Kessel Clustering Algorithm for Evolving Data Stream Clustering Evolving Intelligent Systems: Methodology and Applications , 2010 .

[48]  Noureddine Zerhouni,et al.  E2GK: Evidential Evolving Gustafsson-Kessel Algorithm for Data Streams Partitioning Using Belief Functions , 2011, ECSQARU.