Determination of intracellular K+ activity in rat kidney proximal tubular cells

[1]  D. Duchesneau,et al.  Effect of potassium on proximal tubular function. , 1978, The American journal of physiology.

[2]  H. Brown,et al.  Intracellular ionic activity measurements in nerve and muscle. , 1977, Physiological reviews.

[3]  K. Sato Modifications of glass microelectrodes: a self-filling and a semifloating glass microelectrode. , 1977, The American journal of physiology.

[4]  George G. Guilbault,et al.  Recommendations for Nomenclature of Ion-selective Electrodes , 1977 .

[5]  E. Frömter,et al.  Effect of inhibitors and diuretics on electrical potential differences in rat kidney proximal tubule , 1975, Pflügers Archiv.

[6]  E. Neher,et al.  Rapid Changes of Potassium Concentration at the Outer Surface of Exposed Single Neurons during Membrane Current Flow , 1973, The Journal of general physiology.

[7]  S. Agulian,et al.  Intracellular potassium in cells of the distal tubule , 1972, Pflügers Archiv.

[8]  S. Agulian,et al.  Measurement of intracellular potassium with liquid ion-exchange microelectrodes. , 1972, Journal of applied physiology.

[9]  John L. Walker Ion specific liquid ion exchanger microelectrodes , 1971 .

[10]  G. Rechnitz,et al.  Selectivity studies on liquid membrane, ion-selective electrodes , 1969 .

[11]  J. Sandblom,et al.  Electrical phenomena associated with the transport of ions and ion pairs in liquid ion-exchange membranes. I. Zero current properties. , 1967, The Journal of physical chemistry.

[12]  J. Orloff,et al.  Effect of temperature and medium K on Na and K fluxes in separated renal tubules. , 1966, The American journal of physiology.

[13]  R. Robinson ACTIVITY COEFFICIENTS OF SODIUM CHLORIDE AND POTASSIUM CHLORIDE IN MIXED AQUEOUS SOLUTIONS AT 25 , 1961 .

[14]  Malcolm Dole,et al.  THE THEORY OF THE GLASS ELECTRODE , 1931 .

[15]  E. Frömter,et al.  Active transport potentials, membrane diffusion potentials and streaming potentials across rat kidney proximal tubule , 2004, Pflügers Archiv.

[16]  S. Agulian,et al.  Electrochemical potentials of potassium in proximal renal tubule of rat , 2004, Pflügers Archiv.

[17]  U. Schmidt,et al.  NaK stimulated adenosinetriphosphatase: Intracellular localisation within the proximal tubule of the rat nephron , 2004, Pflügers Archiv.

[18]  A. Edelman,et al.  Application of ion-selective microelectrodes to rat kidney proximal tubular cells [proceedings]. , 1978, Arzneimittel-Forschung.

[19]  M. Fujimoto,et al.  Physicochemical properties of a liquid ion exchanger microelectrode and its application to biological fluids. , 1976, The Japanese journal of physiology.

[20]  W. Armstrong,et al.  Ionic Activities in Cells , 1975 .

[21]  I. Silver,et al.  Microelectrode recording of ion activity in brain. , 1974, Advances in experimental medicine and biology.

[22]  W. E. Morf,et al.  Carrier antibiotics and model compounds as components of selective ion-sensitive electrodes , 1973 .

[23]  G. J. Moody,et al.  Selective ion sensitive electrodes , 1971 .

[24]  K. Ullrich,et al.  Micropuncture and Microanalysis in Kidney Physiology , 1969 .