Advances in Modeling and Inference for Environmental Processes with Nonstationary Spatial Covariance

Modeling of the spatial dependence structure of environmental processes is fundamental to almost all statistical analyses of data that are sampled spatially. These analyses address tasks such as spatial estimation (kriging) and monitoring network design, as well as the basic scientific characterization of the second order properties of these processes. Prior to 1990, the lack of general models for the spatial covariance function led to almost exclusive reliance on stationary models of the form cov(Z(x), Z(y)) = C(x-y) where Z (x): ∈ D denotes a process defined over a spatial domain D ⊂ R d . However, it is now widely recognized that most, if not all, spatia-temporal environmental processes (and many spatial processes without a temporal aspect) manifest spatially nonstationary or heterogeneous covariance structure when considered over a sufficiently large spatial range.

[1]  T. C. Haas,et al.  Lognormal and Moving Window Methods of Estimating Acid Deposition , 1990 .

[2]  Calyampudi R. Rao,et al.  Multivariate environmental statistics , 1995 .

[3]  Adrian E. Raftery,et al.  Reply to the Discussion of Space-Time Modelling with Long-Memory Dependence: Assessing Ireland's Wind Resource , 1988 .

[4]  Douglas W. Nychka,et al.  Case Studies in Environmental Statistics , 1998 .

[5]  N. Cressie,et al.  A dimension-reduced approach to space-time Kalman filtering , 1999 .

[6]  T. C. Haas,et al.  Local Prediction of a Spatio-Temporal Process with an Application to Wet Sulfate Deposition , 1995 .

[7]  Douglas W. Nychka,et al.  Design of Air-Quality Monitoring Networks , 1998 .

[8]  P. Guttorp,et al.  Nonparametric Estimation of Nonstationary Spatial Covariance Structure , 1992 .

[9]  C. Eugene Buell The Number of Significant Proper Functions of Two-Dimensional Fields , 1978 .

[10]  P. Guttorp,et al.  Bayesian estimation of semi‐parametric non‐stationary spatial covariance structures , 2001 .

[11]  Eric R. Ziegel,et al.  Probability, Statistics and Optimization , 1996 .

[12]  Jacqueline M. Hughes-Oliver,et al.  Parametric covariance models for shock-induced stochastic processes 1 1 This work was supported in p , 1999 .

[13]  Peter Guttorp,et al.  20 Methods for estimating heterogeneous spatial covariance functions with environmental applications , 1994, Environmental Statistics.

[14]  David Higdon,et al.  Non-Stationary Spatial Modeling , 2022, 2212.08043.

[15]  Olivier Perrin,et al.  Identifiability for non-stationary spatial structure , 1999 .

[16]  C. Obled,et al.  Some developments in the use of empirical orthogonal functions for mapping meteorological fields , 1986 .

[17]  David M. Holland,et al.  Spatial Prediction of Sulfur Dioxide in the Eastern United States , 1999 .

[18]  G. Oehlert,et al.  Regional Trends in Sulfate Wet Deposition , 1993 .

[19]  Montserrat Fuentes,et al.  A high frequency kriging approach for non‐stationary environmental processes , 2001 .

[20]  R. Preisendorfer,et al.  Principal Component Analysis in Meteorology and Oceanography , 1988 .

[21]  O. Perrin,et al.  Reducing non-stationary random fields to stationarity and isotropy using a space deformation , 2000 .

[22]  Ayala Cohen,et al.  Regression on a Random Field , 1969 .

[23]  Kanti V. Mardia,et al.  Statistical Shape Models in Image Analysis , 1992 .

[24]  Jye-Chyi Lu,et al.  Parametric nonstationary correlation models , 1998 .

[25]  Barnali Das Global covariance modeling: A deformation approach to anisotropy , 2000 .

[26]  A. Raftery,et al.  Space-time modeling with long-memory dependence: assessing Ireland's wind-power resource. Technical report , 1987 .

[27]  A. O'Hagan,et al.  Bayesian inference for non‐stationary spatial covariance structure via spatial deformations , 2003 .

[28]  T. C. Haas,et al.  Kriging and automated variogram modeling within a moving window , 1990 .

[29]  Fred L. Bookstein,et al.  Principal Warps: Thin-Plate Splines and the Decomposition of Deformations , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  E. Ziegel,et al.  geoENV VII: Geostatistics for Environmental Applications , 1997 .