Estimating the total mass emitted by the eruption of Eyjafjallajökull in 2010 using plume-rise models

[1]  C. Bonadonna,et al.  Physical characterization of explosive volcanic eruptions based on tephra deposits: Propagation of uncertainties and sensitivity analysis , 2015 .

[2]  L. Mastin Testing the accuracy of a 1‐D volcanic plume model in estimating mass eruption rate , 2014 .

[3]  B. Devenish,et al.  Plume rise and spread in a linearly stratified environment , 2014 .

[4]  B. Devenish Using simple plume models to refine the source mass flux of volcanic eruptions according to atmospheric conditions , 2013 .

[5]  R. S. J. Sparks,et al.  Interaction between volcanic plumes and wind during the 2010 Eyjafjallajökull eruption, Iceland , 2013 .

[6]  Peter N. Francis,et al.  Sensitivity analysis of dispersion modeling of volcanic ash from Eyjafjallajökull in May 2010 , 2012 .

[7]  B. Golding,et al.  Operational prediction of ash concentrations in the distal volcanic cloud from the 2010 Eyjafjallajökull eruption , 2012 .

[8]  Thorvaldur Thordarson,et al.  Ash generation and distribution from the April-May 2010 eruption of Eyjafjallajökull, Iceland , 2012, Scientific Reports.

[9]  J. Box,et al.  Proglacial river stage, discharge, and temperature datasets from the Akuliarusiarsuup Kuua River northern tributary, Southwest Greenland, 2008–2011 , 2012 .

[10]  Sara Basart,et al.  Validation of the FALL3D ash dispersion model using observations of the 2010 Eyjafjallajökull volcanic ash clouds , 2012 .

[11]  Franco Marenco,et al.  A study of the arrival over the United Kingdom in April 2010 of the Eyjafjallajökull ash cloud using ground-based lidar and numerical simulations , 2012 .

[12]  Albert Ansmann,et al.  Evaluating the structure and magnitude of the ash plume during the initial phase of the 2010 Eyjafjallajökull eruption using lidar observations and NAME simulations , 2011 .

[13]  Kerstin Stebel,et al.  Determination of time- and height-resolved volcanic ash emissions and their use for quantitative ash dispersion modeling: the 2010 Eyjafjallajökull eruption , 2011 .

[14]  A. Robins,et al.  Comparison of plume rise models against water tank experimental data for neutral and stable crossflows , 2011 .

[15]  D. Thomson,et al.  Large-eddy simulation of a buoyant plume in uniform and stably stratified environments , 2010, Journal of Fluid Mechanics.

[16]  H. Webster,et al.  The Entrainment Rate for Buoyant Plumes in a Crossflow , 2010 .

[17]  Larry G. Mastin,et al.  A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions , 2009 .

[18]  David J. Thomson,et al.  The U.K. Met Office's Next-Generation Atmospheric Dispersion Model, NAME III , 2007 .

[19]  D. Thomson,et al.  Validation of a Lagrangian model plume rise scheme using the Kincaid data set , 2002 .

[20]  William I. Rose,et al.  Integrating retrievals of volcanic cloud characteristics from satellite remote sensors: a summary , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[21]  P. Huq,et al.  A laboratory study of buoyant plumes in laminar and turbulent crossflows , 1996 .

[22]  G. A. Davidson Simultaneous trajectory and dilution predictions from a simple integral plume model , 1989 .

[23]  G. Briggs,et al.  Plume Rise Predictions , 1982 .

[24]  J. Turner,et al.  Buoyancy Effects in Fluids , 1973 .

[25]  David P. Hoult,et al.  Turbulent plume in a laminar cross flow , 1972 .

[26]  J. Fay,et al.  A Correlation of Field Observations of Plume Rise , 1970 .

[27]  J. Fay,et al.  A Theory of Plume Rise Compared with Field Observations , 1969 .

[28]  Geoffrey Ingram Taylor,et al.  Turbulent gravitational convection from maintained and instantaneous sources , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.